首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous sucrose density gradient subfractions from bovine adrenal medullary microsomes were found to accumulate 45Ca2+ in the presence of ATP and ammonium oxalate mainly in subfractions of intermediate density. (Na+ + K+)-ATPase (plasma membrane marker) and Ca2+-ATPase activities were also concentrated in these intermediate subfractions but thiamine pyrophosphatase (Golgi apparatus marker) was not. NADH oxidase (endoplasmic reticulum marker) activity was distributed throughout all subfractions.45Ca2+ accumulation in adrenal cortical microsomes was found to rise and fall in parallel with thiamine pyrophosphatase but not with (Na+ + K+)-ATPase or NADH oxidase activities.Accumulation of 45Ca2+ in membrane vesicles in these experiments suggests the existence of a calcium transfer mechanism in plasma membranes of the adrenal medulla but not adrenal cortex.  相似文献   

2.
The influence of the mode of preparation upon some of the characteristics of white adipose tissue plasma membranes and microsomes has been reported. Plasma membrane fractions prepared from mitochondrial pellet were shown to have higher specific activities of (Mg2+ + Na+ + K+)-ATPase than plasma membranes originating in crude microsomes. Isolation of fat cells by collagenase treatment was found to result in a decrease in specific activity of the plasma membrane enzymes; in plasma membranes prepared from isolated fat cells, the specific activity values obtained for (Mg2+ + Na+ +k+)-ATPase and 5'-nucleotidase were only 42% and 6.3% respectively of those obtained in plasma membranes prepared from whole adipose tissue. Purification of whole adipose tissue crude microsomes by hypotonic treatment caused extensive solubilization of the endoplasmic reticulum marker enzymes, NADH oxidase and NADPH cytochrome c reductase. The lability of endoplasmic reticulum marker enzymes, however, was found to be greatly diminished in the preparations from isolated fat cells. The possibility that NADH oxidase and NADPH cytochrome c reductase activities found in the plasma membranes are microsomal enzymes adsorbed by the plasma membranes is discussed. The peptide patterns as well as the NADH oxidase and NADPH cytochrome c reductase activity patterns of plasma membranes and purified microsomes were compared by means of sodium dodecyl sulfate or Triton X-100 polyacrylamide gel electrophoresis.  相似文献   

3.
The mechanism of action of the cytotoxic protein P6 isolated from cobra venom (Naja naja) which shows preferential cytotoxicity particularly to Yoshida sarcoma cells has been studied by its effects on the membrane-bound enzyme (Na-++K-+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) of a variety of cell systems. Evidence obtained with Yoshida sarcoma cells, dog and human erythrocytes and three tissue culture cell lines KB (human oral carcinoma), Hela (human cervix carcinoma) and L-132 (human lung embryonic) shows that inhibition of (Na-++K-+)-ATPase by the P6 protein can be correlated with its lytic activity. (Na-++k-+)-ATPase of Yoshida sarcoma membrane fragments inactivated by P6 protein could be reconstituted by the addition of phosphatidylserine and phosphatidic acid. It is conceivable that lysis of cells by the P6 protein may be due to an imbalance of K-+ and Na-+ in the cell which leads to swelling and disintegration of the membrane structure. Observations indicate that the P6 protein combines with membrane constituents of susceptible cells. The overall evidence suggests that both the specificity of its protein structure and the highly basic nature of the P6 protein are factors which enable it to compete with the lipid moiety maintaining the (Na-++k-+)-ATPase of the susceptible cells in proper conformation for activity.  相似文献   

4.
Fractions composed primarily of cells (Fraction I), membrane fragments (Fraction II) and matrix vesicles (Fraction III) were isolated from chick epiphyseal cartilage. The characteristics of the alkaline phosphatase (EC 3.1.3.1), pyrophosphatase (EC 3.6.1.1) and ATPase (EC 3.6.1.3) activities in the matrix vesicle fraction were studied in detail. Mg-2-+ was not absolutely essential to any of the activities, but at low levels was stimulatory in all cases. Higher concentrations inhibited both pyrophosphatase and ATPase activities. Both the stimulatory and inhibitory effects were pH-dependent. Ca-2-+ stimulated all activities weakly in the absence of Mg-2-+. However, when Mg-2-+ was present, Ca-2-+ was slightly inhibitory. Thus, none of the activities appear to have a requirement for Ca-2-+, and hence would not seem to be involved with active Ca-2-+ transport in the typical manner. The distribution of alkaline phosphatase, pyrophosphatase, and Mg-2-+ ATPase activities among the various cartilage fractions was identical, and concentrated primarily in the matrix vesicles. Conversely, the highest level of (Na-+ + K-+)-ATPase activity was found in the cell fraction. All activites showed nearly identical sensitivities to levamisole (4 - 10-3 M) which caused nearly complete inhibition of alkaline phosphatase and pyrophosphatase. About 10-15% of the ATPase activity was levamisole-insensitive. The data are consistent with the concept that the Mg-2-+-ATPase and pyrophosphatase activities of matrix vesicles stem from one enzyme, namely, alkaline phosphatase.  相似文献   

5.
The phosphorylation and dephosphorylation steps of the (Na-++K-+)-dependent ATPase (adenosine triphosphatase) (EC 3.6.1.3) reaction have been compared in 'normal', lipid-depleted and 'restored' membrane ATPase preparations. Partial lipid depletion was achieved by a single extraction with Lubrol W, and 'restoration' by adding pure phosphatidylserine. Gamma-32-P-labelled ATP was used for phosphorylation. The main findings were as follows. (1) Partial lipid depletion decreased but did not prevent Na-+-dependent phosphorylation, although it virtually abolished both Na-+-dependent and (Na-++K-+)-dependent ATPase activities. (2) 'Restoration' with phosphatidylserine produced an increment in phosphorylation that was the same in the presence and absence of added Na-+. (3) K-+ decreased the extent of Na-+-dependent phosphorylation of the depleted enzyme without producing a corresponding release of Pi. (4) K-+ rapidly decreased the extent of phosphorylation of the 'restored' enzyme to near-background value, with a concomitant release of Pi. (5) Na-+-dependent ATP hydrolysis was not restored. (6) The turnover of the 'restored' enzyme seemed to be higher than that of the 'normal' enzyme. The reaction sequence is discussed in relation to these results and the fact that the depleted enzyme retained about 50% of K-+-dependent phosphatase activity.  相似文献   

6.
Plasma membranes were isolated from rat liver mainly under isotonic conditions. As marker enzymes for the plasma membrane, 5'-nucleotidase and (Na+ + K+)-ATPase were used. The yield of plasma membrane was 0.6-0.9 mg protein per g wet weight of liver. The recovery of 5'-nucleotidase and (Na+ +K+)-ATPase activity was 18 and 48% of the total activity of the whole-liver homogenate, respectively. Judged from the activity of glucose-6-phosphatase and succinate dehydrogenase in the plasma membrane, and from the electron microscopic observation of it, the contamination by microsomes and mitochondria was very low. A further homogenization of the plasma membrane yielded two fractions, the light and heavy fractions, in a discontinuous sucrose gradient centrifugation. The light fraction showed higher specific activities of 5'-nucleotidase, alkaline phosphatase, (Na+ +K+)-ATPase and Mg2+-ATPase, whereas the heavy one showed a higher specific activity of adenylate cyclase. Ligation of the bile duct for 48 h decreased the specific activities of (Na2+ +K+)-ATPase and Mg2+-ATPase in the light fraction, whereas it had no significant influence on the activities of these enzymes in the heavy fraction. The specific activity of alkaline phosphate was elevated in both fractions by the obstruction of the bile flow. Electron microscopy on sections of the plasma membrane subfractions showed that the light fraction consisted of vesicles of various sizes and that the heavy fractions contained membrane sheets and paired membrane strips connected by junctional complexes, as well as vesicles. The origin of these two fractions is discussed and it is suggested that the light fraction was derived from the bile front of the liver cell surface and the heavy one contained the blood front and the lateral surface of it.  相似文献   

7.
The phospholipid-dependence of the (Na-++K-+)-dependent ATPase (adenosine triphosphatase) (EC 3.6.1.3) and associated K-+-dependent phosphatase activity (EC 3.6.1.7) have been compared. Unlike the (Na-++K-+)-dependent ATPase activities, the K-+-dependent phosphatase activities of a number of different preparations were not closely correlated with their total phospholipid contents. After partial lipid depletion with a single extraction in Lubrol W the residual ATPase and phosphatase activities were correlated, but their magnitudes were quite different: on average only about 5% of the former remained compared with 50% of the latter. A similar differential effect on these activities was found after extraction with deoxycholate. In contrast with the ATPase, consistent restoration of the phosphatase activity of Lubrol-extracted enzymes by added exogenous phospholipids was not observed. We conclude that, although the K-+-dependent phosphatase may be lipid-dependent, the lipid requirement must be different from that of the complete ATPase system, and this difference should help investigations of their relationship.  相似文献   

8.
Purified plasma membranes of mouse EL4 lymphoma cells were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (MF1) eluted freely from the affinity column, the second (MF2) adhered specifically to Con A-Sepharose. Both membrane subfractions proved to be of plasma membrane origin, as evidenced by the following criteria. (i) The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. (ii) When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. (iii) After enzymatic radioiodination of the cells, the total content of labelled proteins was very similar in isolated plasma membranes and in both subfractions. (iv) Some plasma membrane marker enzymes exhibited nearly identical specific activities in plasma membranes, MF1 or MF2 including gamma-glutamyl transpeptidase, 5'-nucleotidase and Mg2+-ATPase. Both subfractions exhibited characteristic differences. Thus the specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysophosphatidylcholine acyltransferase were several-fold enriched in MF2 compared to MF1. SDS-polyacrylamide gel electrophoresis revealed a different polypeptide composition of the two subfractions. Polypeptides of apparent molecular mass of 116, 95, 42, 39, 30 and 28 kDa were highly enriched in MF2, whereas MF1 contained another set of proteins, of apparent molecular mass of 70, 55 and 24 kDa. The phospholipid fatty acid composition of the subfractions proved to be different, as well, MF2 contained more saturated fatty acids than MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of the mouse EL4 lymphoma cells, containing a set of polypeptides, among others membrane bound enzymes, embedded in a different phospholipid milieu.  相似文献   

9.
Highly purified plasma membranes of calf thymocytes were fractionated by means of affinity chromatography on ouabain-Sepharose. By the method used two subfractions were obtained, one eluting freely from the affinity gel (MF1oua) and a second specifically retained by matrix-bound ouabain (MF2oua), with a total recovery of 95 per cent. Fractionation required the binding of matrix-bound ouabain to its plasma membrane receptor, i.e. (Na+ + K+)-ATPase. Increasing the temperature and binding time did not significantly alter the fractionation of plasma membranes into the two subfractions. Both plasma membrane subfractions separated by ouabain-Sepharose were of plasma membrane origin, as revealed by the identical specific activities of several membrane bound enzymes, gamma-glutamyl transpeptidase, alkaline phosphatase and Mg2+-ATPase in unseparated plasma membranes and in both subfractions, and by the identical amounts of the cytoskeletal protein actin in unseparated plasma membranes and subfractions. The plasma membrane subfractions MF1oua and MF2oua showed different structural and functional properties. In SDS-polyacrylamide gel electrophoresis polypeptides of 170, 150, 110, 94, 39, and 30 kDa were several-fold enriched in the adherent fraction, MF2oua. The phospholipid fatty acid composition of the plasma membrane subfractions proved to be different, as well. MF2oua contained significantly higher amounts of saturated fatty acids as compared to MF1oua. The specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysolecithin acyltransferase were highly enriched in the adherent fraction MF2oua, as compared to MF1oua. The data suggest that by the means of affinity chromatography on ouabain-Sepharose plasma membrane domains of the lymphocyte plasma membrane can be isolated, most probably implicated in the initiation of lymphocyte activation.  相似文献   

10.
Characterization of functional domains of the lymphocyte plasma membrane   总被引:1,自引:0,他引:1  
Highly purified plasma membranes of calf thymocytes were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (fraction 1) eluted freely from the affinity column, the second (fraction 2) adhered specifically to concanavalin A-Sepharose. Previous analysis showed that both subfractions were right-side-out (Resch, K., Schneider, S. and Szamel, M. (1981) Anal. Biochem. 117, 282-292). The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. After enzymatic radioiodination of thymocytes, the relative distribution of labelled proteins and externally exposed phospholipids was very similar in isolated plasma membranes and in both membrane subfractions, indicating the plasma membrane nature of the subfractions separated by affinity chromatography on concanavalin A-Sepharose. This finding was further substantiated by the nearly identical specific activities of some membrane-bound enzymes, Mg2+-ATPase, alkaline phosphatase and gamma-glutamyl transpeptidase. The specific activities of (Na+ + K+)-ATPase and of lysolecithin acyltransferase were several-fold enriched in fraction 2 compared to fraction 1, especially after rechromatography of fraction 1 on concanavalin A-Sepharose. Unseparated membrane vesicles contained two types of binding site for concanavalin A. In contrast, isolated subfractions showed a linear Scatchard plot; fraction 2 exhibited fewer binding sites for concanavalin A: the association constant was, however, 3.5-times higher than that measured in fraction 1. When plasma membranes isolated from concanavalin A-stimulated lymphocytes were separated by affinity chromatography, the yield of the two subfractions was similar to that of membranes from unstimulated lymphocytes. Upon stimulation with concanavalin A, Mg2+-ATPase, gamma-glutamyl transpeptidase and alkaline phosphatase were suppressed in their activities in both membrane subfractions. In contrast, the specific activities of (Na+ + K+)-ATPase and lysolecithin acyltransferase were enhanced preferentially in the adherent fraction (fraction 2). The data suggest the existence of domains in the plasma membrane of lymphocytes which are formed by a spatial and functional coupling of receptors with high affinity for concanavalin A, and certain membrane-bound enzymes, implicated in the initiation of lymphocyte activation.  相似文献   

11.
Isolated membrane vesicles from pig stomach smooth muscle (antral part) were subfractionated by a density gradient procedure modified in order to obtain an efficient extraction of extrinsic proteins. By using this method in combination with digitonin-treatment, an endoplasmic reticulum fraction contaminated with maximally 10 to 20% of plasma membranes was isolated, together with a plasma membrane fraction containing at most 30% endoplasmic reticulum. The endoplasmic reticulum and plasma membrane fractions differed in protein composition, reaction to digitonin, binding of wheat germ agglutinin, activities of marker enzymes and in the characteristics of the Ca2+ uptake. The Ca2+ uptake by the endoplasmic reticulum was much more stimulated by oxalate than the uptake by plasma membranes. Both fractions showed a (Ca2+ + Mg2+)-ATPase activity, but the largest amount of this enzyme was present in the plasma membranes. The study of the phosphorylated intermediates of the (Ca2+ + Mg2+)-ATPase by polyacrylamide gel electrophoresis revealed two phosphoproteins one of 130 kDa and one of 100 kDa (Wuytack, F., Raeymaekers, L., De Schutter, G. and Casteels, R. (1982) Biochim. Biophys. Acta 693, 45-52). The 130 kDa enzyme was predominant in the fraction enriched in plasma membrane whereas the distribution of the 100 kDa polypeptide correlated with the endoplasmic reticulum markers. The 130 kDa ATPase was the main 125I-calmodulin binding protein detected on nitrocellulose blots of proteins separated by gel electrophoresis. The (Ca2+ + Mg2+)-ATPase activity of the plasma membranes was higher than the (Na+ + K+)-ATPase activity, suggesting that the Ca2+ extrusion from these cells depends much more on the activity of the (Ca2+ + Mg2+)-ATPase than on Na+-Ca2+ exchange.  相似文献   

12.
The specific activity of the Mg2+-ATPase and the (Ca2+ + Mg2+)-ATPase has been measured in a microsomal fraction from pig antral smooth muscle with the phosphate-release assay and the NADH-coupled enzyme assay, and the release of inorganic phosphate as a function of time is compared with the concomitant production of ADP. Both assays are found to overestimate the true Mg2+-ATPase activity. The adenylate kinase inhibitor P1,P5-di(adenosine-5'-)pentaphosphate (Ap5A) reduces the specific activity of the Mg2+-ATPase measured in the NADH-coupled enzyme assay to about half of its original value; however, it does not affect the specific activity of the Mg2+-ATPase in the Pi-release assay. The considerable overestimation of the Mg2+-ATPase activity in the NADH-coupled enzyme assay results from a combined action of an ATP pyrophosphatase (ATP in equilibrium AMP + PPi) and adenylate kinase activity contaminating the microsomes. The adenylate kinase activity in the microsomes catalyses the conversion of AMP formed by the ATP pyrophosphatase together with ATP into two ADP's. Also the phosphate-release assay is prone to an overestimation artefact because an inorganic pyrophosphatase will degrade the pyrophosphate and thus lead to additional Pi-production. Measurements of AMP and NAD+ production by HPLC confirmed our proposed reaction scheme. The same (Ca2+ + Mg2+)-ATPase activity is found in both assays, because the (Ca2+ + Mg2+)-ATPase activity is calculated from the difference in ATPase activity in the presence and absence of Ca2+, so that as a consequence the interfering activities are automatically subtracted.  相似文献   

13.
Large amounts of injected radiolabeled low density lipoproteins have been found by others to accumulate primarily in the liver and studies in various types of isolated cells, including hepatocytes, have indicated the presence of specific cell membrane recognition sites for lipoproteins. In the present studies, the high affinity binding of radiolabeled low density lipoproteins ([125I]LDL, d 1.020--1.063 g/mL) was measured in the major subcellular fractions of porcine liver homogenates. The nuclear and mitochondrial fractions were 1.9- and 1.4-fold enriched in binding activity with respect to unfractionated homogenates and contained 15% and 12% of the total binding activity, respectively. The microsomes, which contained most of the plasma membranes and endoplasmic reticulum, were approximately 4-fold enriched in binding and contained 73% of the binding activity. Microsomal subfractions obtained by differential homogenization and centrifugation procedures were 5.6--7.0-fold enriched in LDL binding and contained 54--58% of the homogenate binding activity. They were separated by discontinuous sucrose density gradient centrifugation into fractions which contained "light" and "heavy" plasma membranes and endoplasmic reticulum. The heavy membrane fraction was 2--4 fold in binding with respect to the parent microsomes (16--22 fold with respect to the homogenate). There was no enrichment of binding activity in the other two fractions. Two plasma membrane "marker" enzymes, nucleotide pyrophosphatase and 5'-nucleotidase, were also followed. Of the two, binding in the sucrose density gradient subfractions most closely followed nucleotide pyrophosphatase, which was also most highly enriched (3.2--3.3-fold) in the heavy membrane fraction, but did not follow it exactly. The enzyme was 2-fold richer in the light membranes than in the parent microsomes, though the light membrane binding activity was only 0.4--1.4 times that of the parent microsomes. High affinity binding was time and temperature dependent, saturable, and inhibited by unlabeled low density lipoproteins but not by unrelated proteins. Binding was stimulated 2--3 fold Ca2+, was not affected by treatment with Pronase or trypsin and was inhibited by low concentrations of phospholipids and high density lipoproteins (HDL). Heparin-Mn2+ treatment of HDL did not affect its ability to inhibit [125I] LDL binding. The LDL recognition site was distinct from the liver membrane asialoglycoprotein receptor; LDL binding was not inhibited by desialidated fetuin. We conclude that porcine liver contains a high affinity binding site that recognizes features common to both pig low density and high density lipoproteins. Further studies may elucidate the significance of this binding site in lipoprotein metabolism.  相似文献   

14.
Separation of the gradient-purified gastric microsome into two membrane subfractions of distinct enzymatic and phospholipid composition has been achieved by mild SDS (0.033% w/v) treatment followed by sucrose gradient centrifugation of the pig and rabbit gastric microsomes. While the high-density membranes had all of the (H+,K+)-ATPase and K+-pNPPase activities and revealed a single major 100-kDa band on SDS-PAGE, the low-density membranes contained all of the 5'-nucleotidase and nearly all of the Mg2+-ATPase. In the present study, the low-density subfraction has been characterized to be derived from the apical membranes and the high-density one from the intracellular tubulovesicular membranes of the parietal cells. Such characterization was based primarily on sole dependency of the apical plasma membranes on the endogenous activator for (H+,K+)-ATPase activity, differential sensitivity of the activator (AF)-dependent and -independent (H+,K+)-ATPase on micromolar vanadate and Ca2+, specific vitamin B12 binding ability of the apical plasmalemma, phospholipid and protein profiles of the two membrane subfractions, and other parameters. The AF, mentioned previously, has recently been implicated as a cytosolic regulator of the gastric (H+,K+)-ATPase [Bandopadhyay et al. (1987) J. Biol. Chem. 262, 5664-5670]. Two different forms (i.e., AF-dependent and -independent forms) of the (H+,K+)-ATPase are suggested to be present in the tubulovesicles on the basis of differential vanadate sensitivity while the AF-dependent form alone is present in the apical membranes. The data have been discussed in terms of stimulation-induced membrane transformation characteristic of the H+-secreting epithelia including the acid-secreting cells of the stomach.  相似文献   

15.
Although the preparation of rat liver Golgi apparatus isolated by our method contains appreciable activities of NADH- and NADPH-cytochrome c reductases and glucose-6-phosphatase, these enzymes as well as thiamine pyrophosphatase of the extensively fragmented Golgi fraction are partitioned in aqueous polymer two-phase systems quite differently from those associated with microsomes. Similarly, the partition patterns of acid phosphatase and 5'-nucleotidase of the Golgi fragments differ from those of homogenized lysosomes and plasma membrane, respectively. It is concluded that most, if not all, of these marker enzymes in the Golgi fraction cannot be ascribed to contamination by the non-Golgi organelles. In sucrose density gradient centrifugation the NADH- and NADPH-cytochrome c reductase activities of the Golgi fraction behave identically with galactosyltransferase but differently from the reductase activities of microsomes, again indicating that the reductases are inherently associated with the Golgi apparatus. NADPH-cytochrome c reductase of the Golgi preparation is immunologically identical with that of microsomes. The marker enzymes mentioned above and galactosyltransferase behave differently from one another when the Golgi fragments are subjected to partitioning in aqueous polymer two-phase systems, suggesting that these enzymes are not uniformly distributed in the Golgi apparatus structure.  相似文献   

16.
 One- and 2-year-old Pinus sylvestris saplings were exposed to chronic doses of ozone (O3) and sulphur dioxide (SO2) in short-term (3 months) and long-term (18 months) experiments. Microsomal and plasma membrane fractions were purified by phase partitioning from current-year needles. The following membrane enzyme activities were determined in the microsomal and/or purified plasma membrane fractions: K+, Mg2+-ATPase (EC 3.6.1.3), NADH ferricyanide oxidoreductase (EC 1.6.99.3), NADH-duroquinone reductase (EC 1.6.5.1), NADH oxidase type I (EC 1.6.99.2), NADH oxidase type II or peroxidase-like enzyme (EC 1.11.1.7) and pyrophosphatase (EC 3.6.1.1). NADH oxidase type I was slightly stimulated in the microsomal fraction after a short-term exposure to O3 whereas NADH-dependent duroquinone reductase was not affected by this pollutant. However, in the long term experiment, NADH oxidase type II measured in the plasma membrane fraction was more than 2-fold stimulated in the SO2 treated pines and more than 4-fold when O3 was added to SO2. However, pyrophosphatase was decreased by 50% in trees treated with SO2+O3 and remained unchanged in the SO2 treatment, indicating that this enzyme is probably sensitive to oxidation. K+, Mg2+-ATPase showed a trend towards an enhancement of activity when exposed to chronic concentrations of air pollutants, this enhancement was more important in the long-term experiment after the combined effect of SO2 and O3. However, the K+-stimulated component was inhibited by the combination of both pollutants. Finally, NADH ferricyanide reductase was significantly enhanced after O3 and SO2+O3 exposures appearing as the most sensitive oxidoreductase to these air pollutants. The stimulation of ATPase and membrane oxidoreductases could facilitate the adaptation and defense of trees by maintaining an adequate redox potential in the plasma membrane region and perhaps stimulating the reduction of extracellular electron acceptors generated by the exposure to air pollutants. Received: 15 September 1997 / Accepted: 4 May 1998  相似文献   

17.
Isopycnic centrifugation experiments using sucrose density gradients showed that in digitonin-treated microsomes the distribution of the plasma membrane (PM) marker 5'-nucleotidase was shifted to higher densities. The treatment also caused similar but less pronounced changes in the distribution of protein, the putative endoplasmic reticulum (ER) marker NADPH-dependent cytochrome c reductase, and the inner mitochondrial marker cytochrome c oxidase. Similar experiments using more purified membrane fractions showed that the digitonin treatment led to a comparable increase in the densities of the fractions N1 and N2 previously described as subfractions of plasma membrane and to considerably less increase in the density of the fraction N3B which is enriched in the endoplasmic reticulum and the inner mitochondrial markers. Digitonin inhibited the ATP-dependent Ca uptake by the N1 fraction in a concentration-dependent manner (I50 = 0.3 mg/mL). Digitonin (0.5 mg/mL) inhibited the ATP-dependent azide-insensitive Ca uptake by all the fractions. The results support the hypothesis that (a) N1 and N2 are subfractions of plasma membrane, and (b) ATP-dependent azide-insensitive Ca uptake in rat myometrium is a property of plasma membranes.  相似文献   

18.
A method has been developed for the isolation of sealed plasma membrane vesicles from rabbit white skeletal muscle. The final preparation was highly purified as indicated by enrichment of plasma membrane marker enzymes (i.e. ouabain-sensitive (Na+,K+)-ATPase, adenylate cyclase, and acetylcholinesterase). The absence of sarcoplasmic reticulum and mitochondria as contaminants was indicated by the low specific activity of marker enzymes, i.e. Ca2+-ATPase, succinate-cytochrome c reductase, and monoamine oxidase. Thin section and negative staining electron microscopy confirmed the absence of sarcoplasmic reticulum and mitochondrial contamination. The plasma membrane preparation consisted largely of sealed vesicles as observed by electron microscopy and as also demonstrated by latency of enzymic activities, which were unmasked by preincubation with detergent (sodium dodecyl sulfate). Membrane sidedness was estimated from latency of ouabain-sensitive (Na+,K+)-ATPase activity and acetylcholinesterase activity. The latency studies suggest that most of the vesicles are oriented inside out with respect to the orientation of the sarcolemma membrane in the muscle fiber. The inside-out plasma membrane vesicles actively accumulated sodium ions upon addition of ATP. The sodium ions were concentrated greater than 8-fold inside the vesicles and were released upon addition of the ionophore monensin. The sodium ions were taken up in the presence of K+ or NH4+ but not of choline. Uptake was inhibited by low concentrations of vanadate or digitoxin. The Na+ uptake was concomitant with Rb+ efflux. Therefore, the sodium ion transport and the resulting gradients formed appear to have been generated by the ouabain-sensitive (Na+,K+)-ATPase. Batrachotoxin, which opens Na+ channels in excitable tissues, prevents most of the Na+ uptake, suggesting the presence of toxin-activated Na+ channels in these plasma membrane vesicles.  相似文献   

19.
Preparations enriched with plasmalemmal, outer mitochondrial, or Golgi complex membranes from rat liver were subfractionated by isopycnic centrifugation, without or after treatment with digitonin, to establish the subcellular distribution of a variety of enzymes. The typical plasmalemmal enzymes 5'-nucleotidase, alkaline phosphodiesterase I, and alkaline phosphatase were markedly shifted by digitonin toward higher densities in all three preparations. Three glycosyltransferases, highly purified in the Golgi fraction, were moderately shifted by digitonin in both this Golgi complex preparation and the microsomal fraction. The outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the out mitochondrial membrane preparation, in agreement wit its behavior in microsomes. With the exception of NADH cytochrome c reductase (which was concentrated in the outer mitochondrial membrane preparation), typical microsomal enzymes (glucose-6-phosphatase, esterase, and NADPH cytochrome c reductase) displayed low specific activities in the three preparations; except for part of the glucose-6-phosphatase activity in the plasma membrane preparation, their density distributions were insensitive to digitonin, as they were in microsomes. The influence of digitonin on equilibrium densities was correlated with its morphological effects. Digitonin induced pseudofenestrations in plasma membranes. In Golgi and outer mitochondrial membrane preparations, a few similarly altered membranes were detected in subfractions enriched with 5'-nucleotidase and alkaline phosphodiesterase I. The alterations of Golgi membranes were less obvious and seemingly restricted to some elements in the Golgi preparation. No morphological modification was detected in digitonin-treated outer mitochondrial membranes. These results indicate that each enzyme is associated with the same membrane entity in all membrane preparations and support the view that there is little overlap in the enzymatic equipment of the various types of cytomembranes.  相似文献   

20.
Adsorption of local anesthetics on phospholipid membranes   总被引:5,自引:0,他引:5  
The subcellular distribution in rat liver of non-latent and latent NADH pyrophosphatase was determined by analytical sucrose density gradient centrifugation. Non-latent NADH pyrophosphatase activity was distributed similarly to the plasma membrane marker, 5'-nucleotidase. However, latent NADH pyrophosphatase was found at the low density region of the gradient, similar to the distribution of galactosyl transferase, a Golgi marker. A population of membranes, corresponding to those from the low density region, was prepared by discontinuous sucrose gradient centrifugation. Radiolabelled insulin was used, to monitor the involvement of these membranes in ligand internalization. The membrane perturbant, digitonin, was used to effect a partial separation between membranes bearing NADH pyrophosphatase and those bearing galactosyl transferase. The mechanism by which this separation is effected has been investigated and it was shown that, although digitonin caused a loss of enzyme latency, the density shift was not due to this effect. The partially purified ligandosome-rich fraction was characterized by enzymic and ultrastructural analysis. A novel EM cytochemical stain for NADH pyrophosphatase identified a vesicular fraction distinct from Golgi lamellae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号