首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochemical methods involving metal chelation of the formazan of an N-thiazol-2-yl tetrazolium salt are described for the localization of diphosphopyridine nucleotide diaphorase (DPND) and triphosphopyridine nucleotide diaphorase (TPND) in mitochondria. These methods utilize the reduced coenzymes DPNH or TPNH as substrate. The reaction involves a direct transfer of electrons from reduced coenzyme to the respective diaphorase which in turn transfers the electrons to tetrazolium salt, reducing it to the insoluble formazan. Competition for electrons by preferential acceptors in the respiratory chain was prevented by various inhibitors. In the presence of respiratory inhibitors the rate of tetrazolium reduction was markedly increased. The greatest reduction was observed when amytal was used. Sites of diaphorase activity appeared as deposits of blue-black metal formazan chelate measuring 0.2 to 0.3 micro in diameter. Small mitochondria contained 2 deposits, while larger ones contained up to 6. Considerable differences were observed in the rate of tetrazolium reduction and cellular localization of diaphorase activity when DPNH was used as substrate as compared to TPNH. In each instance DPNH was oxidized more rapidly by tissues than TPNH. These findings support the concept that the oxidation of coenzymes I and II is mediated through separate diaphorases.  相似文献   

2.
A histochemical method is described for the localization of triphosphopyridine nucleotide diaphorase using a recently synthesized tetrazolium salt (Nitro-BT). By virtue of the favorable histochemical properties of this reagent, it has been possible to demonstrate that whereas DPN diaphorase is usually restricted to the mitochondria, the TPN diaphorase activity of corresponding cells was distributed throughout the cytoplasm in granules too fine to be considered mitochondria. Furthermore, although the diaphorase alone is responsible for the passage of electrons from TPNH to the tetrazole, it has been found that sites of activity of different TPN-linked dehydrogenases can be visualized in tissue sections, and characteristic loci for each enzyme may be observed. For example, whereas TPN diaphorase and isocitric dehydrogenase have an extensive distribution in the kidney cortex, 6-phosphogluconic dehydrogenase is limited to the cells of the macula densa.  相似文献   

3.
Methods are presented for the intramitochondrial localization of various diphosphopyridine nucleotide and triphosphopyridine nucleotide-linked dehydrogenases in tissue sections. The cytochemical reactions studied involve the oxidation of the substrates by a specific pyridino-protein. The electron transfer of tetrazolium salt is mediated by the diaphorase system associated with the dehydrogenase. The final electron acceptor was either p-nitrophenyl substituted ditetrazole (nitro-BT) or N-thiazol-2-yl monotetrazole (MTT), the latter giving rise to metal formazan in the presence of cobaltous ions. Mitochondrial localization of the formazan precipitate could be achieved by using hypertonic incubating media containing high concentrations of substrate and co-enzyme. A fast reduction of tetrazolium salt was obtained by chemically blocking the respiratory chain enzymes beyond the flavoproteins. Although diaphorase systems are implicated in the reduction of tetrazolium salts, specific dehydrogenases are solely responsible for the distinct distribution pattern obtained in tissues with various substrates. The present findings in tissue sections are discussed in conjunction with existing biochemical evidence from differential centrifugation experiments.  相似文献   

4.
Methods are presented for the intramitochondrial localization of various diphosphopyridine nucleotide and triphosphopyridine nucleotide-linked dehydrogenases in tissue sections. The cytochemical reactions studied involve the oxidation of the substrates by a specific pyridino-protein. The electron transfer of tetrazolium salt is mediated by the diaphorase system associated with the dehydrogenase. The final electron acceptor was either p-nitrophenyl substituted ditetrazole (nitro-BT) or N-thiazol-2-yl monotetrazole (MTT), the latter giving rise to metal formazan in the presence of cobaltous ions. Mitochondrial localization of the formazan precipitate could be achieved by using hypertonic incubating media containing high concentrations of substrate and co-enzyme. A fast reduction of tetrazolium salt was obtained by chemically blocking the respiratory chain enzymes beyond the flavoproteins. Although diaphorase systems are implicated in the reduction of tetrazolium salts, specific dehydrogenases are solely responsible for the distinct distribution pattern obtained in tissues with various substrates. The present findings in tissue sections are discussed in conjunction with existing biochemical evidence from differential centrifugation experiments.  相似文献   

5.
The rates of oxidation of ent-kaur-16-ene to ent-kaur-16-en-19-ol, ent-kaur-16-en-19-al, ent-kaur-16-en-19-oic acid, and ent-kaur-16-en-7alpha-ol-19-oic acid are maximal in microsomes prepared from the endosperm of immature Marah macrocarpus seeds in which the cotyledons are approximately one-half the overall length of the seed. The supernatant fraction remaining from the preparation of the microsomes contains factors which stimulate the rates of oxidation catalyzed by the microsomes. Added TPNH is more effective than added DPNH in meeting the requirement for reduced pyridine nucleotide. A mixture of DPNH, ATP, and TPN(+) is much more effective than DPNH alone. Experiments with 2,4-dinitrophenol as a selective inhibitor indicate that the ATP-stimulated synthesis of TPNH which occurs in these microsomes in the presence of this mixture of coenzymes provide TPNH for use in the mixed function oxidations. Relatively low concentrations of DPNH and TPNH together are much more effective than either alone at equivalent concentration. This is consistent with the involvement of two pathways of electron transfer associated with the mixed function oxidations, one of which preferentially utilizes TPNH and the other favoring DPNH. FAD added to microsomes at an optimal concentration of about 10 mum in the presence of TPNH stimulates the rate of the oxidations; higher concentrations are inhibitory. FMN by itself does not produce this stimulation. However, FMN and FAD added together at low concentrations (0.5 mum each) have approximately the same effectiveness as FAD alone at 10 mum. This suggests a role for both flavin nucleotides in the normal electron transfer pathways associated with these oxidations. Some of the stimulatory properties of the supernatant fraction may be accounted for by its content of reduced pyridine nucleotides, FAD, and FMN; the concentrations of FAD and FMN were determined to be 1.1 mum and 0.4 mum, respectively. However, the effects of the supernatant fraction are not completely explained by its content of these coenzymes since other experiments indicate the presence of a heat-labile, nondialyzable stimulatory factor(s) in the supernatant fraction in addition to heat-stable, dialyzable fractors.  相似文献   

6.
Submitochondrial particles prepared from beef heart are capable of oxidizing TPNH, in the absence of added DPN, at a rate of approximately 50 nmoles/min × mg protein at 30°. TPNH oxidation by these particles occurs through the respiratory chain as evidenced from TPNH-induced reduction of the cytochromes and the inhibitory effects of rotenone, piericidin A, amytal, antimycin A and cyanide. The latter studies have indicated that the site of TPNH interaction with the respiratory chain is on the substrate side of the rotenone-piericidin block and close to that of DPNH.  相似文献   

7.
The present investigation concerning the histochemical demonstration of DPN diaphorase follows the development of a new reagent, Nitro-BT, which has already been used successfully for the cytochemical localization of the succinic dehydrogenase system. The most consistently favorable results were obtained with the lactate-lactic dehydrogenase system buffered at pH 7.4. Using sections of rat kidney and stomach, it was found that the intensity of stain was optimal after 15 minutes incubation at 37°C., conducted aerobically. By appropriate variations in the substrate mixture it was possible to selectively demonstrate the histochemical distribution of certain DPN-linked dehydrogenases in addition to DPN diaphorase. This was made possible by the special distribution of some of these dehydrogenases which distinguished them from one another. Of the dehydrogenases studied the distribution pattern of β-hydroxybutyric dehydrogenase was the most singular. In the gastric mucosa β-hydroxybutyric dehydrogenase was restricted to the cells of the mucous lining epithelium and the gland necks; and in the kidney the enzyme was limited to the cells of the proximal convoluted tubule and thick limbs of Henle's loop. In contrast, lactic dehydrogenase like DPN diaphorase was demonstrable in almost all cytologic elements of both the stomach and the kidney.  相似文献   

8.
The ratio of formaldehyde formed to TPNH oxidized during aminopyrine oxidative demethylation as catalyzed by rabbit liver microsomes was found to be about 0.5. This is less than the expected 1:1 ratio for a mixed function oxidase reaction and may reflect the oxidation of TPNH by other reactions. Similar results were obtained when measuring the oxidative demethylation of codeine and ethylmorphine. In all cases the addition of DPNH significantly increased the yield of formaldehyde formed in the presence of TPNH. The stimulatory effect of DPNH was a linear function of the DPNH concentration added until the initial concentrations of DPNH and TPNH were equal. Increasing the DPNH concentration above a DPNH:TPNH ratio of 1:1 had no further effect upon the final concentration of formaldehyde formed. This observation, as well as the inhibition of DPNH-supported aminopyrine metabolism by TPN+, argue against the role of a transhydrogenase mechanism for the DPNH effect. The rate of DPNH oxidation catalyzed by liver microsome was also observed to increase markedly in the presence of TPNH.  相似文献   

9.
The flowers of Skunk-cabbage (Symplocarpus foetidus), like thespadix tissues of other Aroids, have a rapid, carbon monoxideand cyanide (HCN) resistant respiration; oxygen uptake is independentof the oxygen partial pressure over a wide range. Cell fractionswere isolated by differential centrifugation and their oxidativeactivities studied. Oxidation of succinate and citrate by mitochondriacan be inhibited 50 to 60 per cent. by 1 X 10–3 M. HCN,and antimycin A (AA) causes partial inhibitions. An active mitochondrialcytochrome-c oxidase is present, and it shows a typical sensitivityto cyanide. The mitochondria possess an active reduced diphosphopyridine-nucleotide(DPNH) oxidase system, which is inhibited roughly 80 per cent.by 1 X 10–3 M. HCN and 1.7 µg./ml. AA. The microsomalDPNH oxidase, which is less sensitive to inhibitors, is lessactive per gramme of tissue than that on the mitochondria. Thefinal supernatant shows little DPNH oxidase. With all fractions,reduced triphosphopyridine nucleotide (TPNH) is oxidized muchmore slowly than DPNH. DPNH-cyto-chrome-c reductase activitywas measured; the mitochondrial system is partially blockedby AA, whereas the microsomal activity is AA-insensitive. Spectro-photometricexamination of a preparation of solubilized mitochondria showedthat cytochromes a, b, and c are present. The results are discussedwith reference to the pathway and localization of hydrogen andelectron transport in the Aroid spadix.  相似文献   

10.
Summary The characteristic localization of the silver-negative A2 cells in the central part of the pancreatic islets in the horse offers a good opportunity to study the ultrastructure and histochemistry of this type of islet cell. Electron microscopical analyses revealed that the A2 cells contained dense spherical granules varying considerably in size. Light and dark A2 cells were identified. The presence of numerous secretory granules of very low density was the most conspicous feature of the B cells. These cells also showed considerable differences in density. A second type of peripheral islet cell was characterized by a very high content of mitochondria and ribosomes. These small islet cells contained tiny granules and are probably identical with the A1 cells.Negative reactions for alkaline and acid phosphatases were obtained throughout the islet tissue, while a strong glucose-6-phosphatase activity was displayed by the peripheral cells. The diphosphopyridine and triphosphopyridine nucleotide diaphorase activities were high in the peripheral cells, considerably weaker reactions being noted in the A2 cells. On the whole there was a low succinic dehydrogenase activity in the islet tissue with a somewhat weaker enzyme staining in the A2 than in the peripheral cells. The reactions for glucose-6-phosphate dehydrogenase and lactic dehydrogenase were also less pronounced in the A2 cells than in the intensely reacting peripheral cells.The following abbreviations are used DPN Diphosphopyridine nucleotide - DPND Diphosphopyridine nucleotide diaphorase - DPNH Diphosphopyridine nucleotide, reduced form - G-6-PD Glucose-6-phosphate dehydrogenase - LD Lactic dehydrogenase - MTT 3,5-diphenyl-2-(4,5-dimethylthiazol-2-yl)-tetrazolium bromide - Nitro-BT 2,2-di-p-nitrophenyl-5,5-diphenyl-3,3-(3,3-dimethoxy-4,4-biphenylene)-ditetrazolium chloride - SD Succinic dehydrogenase - TPN Triphosphopyridine nucleotide - TPND Triphosphopyridine nucleotide diaphorase - TPNH Triphosphopyridine nucleotide, reduced form Supported by the Swedish Medical Research Council and the research grant A-5759 from the National Institute of Arthritis and Metabolic Diseases, United States Public Health Service.  相似文献   

11.
Although the electrolytically obtained DPNH was not completely oxidized by usual dehydrogenases or diaphorases, one of the authors noticed that its absorption band at 340 mμ disappeared completely when it was incubated with the extract of mung been seedlings. The reaction was found to be stimulated by the addition of methylene blue, and the product was identified as DPN. Thus, the reaction resembled that of diaphorase, although it was less specific to the configuration of DPNH. But unlike usual diaphorase, it required a cofactor, which was neither flavins nor metallic ion, but an unidentified acidic substance. General properties of the enzyme and the cofactor are reported in this article.  相似文献   

12.
An enzyme responsible for the NADPH-dependent reduction of nitroblue tetrazolium HCl (NBT) has been isolated from rat brain. Although other tetrazolium salts could be utilised, NBT was the preferred substrate, and the enzyme had an absolute requirement for NADPH. An in vitro assay was developed and used to determine the kinetic constants: Km NBT = 17.3 microM; Km NADPH = 1.9 microM, Vmax = 30.8 mumol product produced/min/mg protein. Substrate inhibition by NADPH was observed in some instances. Brain subcellular fractionation indicated highest enzyme activities in the microsomal fraction. Activity was present in all brain regions and in a variety of peripheral tissues. Relative molecular mass determinations of the native enzyme yielded an Mr = 170-180,000. It seems likely that the enzyme activity described in this study relates directly to the histochemical demonstration of brain NADPH-diaphorase-positive neurons. As yet, the natural substrate for the enzyme is unknown. However, the isolation and purification of NADPH-dependent diaphorase may be anticipated to assist in the elucidation of its function in the brain, and in the special characteristics of those neurons that contain the enzyme in abundance.  相似文献   

13.
Summary A new tetrazolium salt, yellow tetrazolium, has been used to localise succinatetetrazolium reductase with the electron microscope. As expected, the formazan did not give high contrast in the optical microscope, but localization with the EM was good. The size of the formazan granules was 60–100Å; lead staining was essential to secure good contrast.  相似文献   

14.
Eagon, R. G. (University of Georgia, Athens). Pyridine nucleotide-linked reactions of Pseudomonas natriegens. J. Bacteriol. 84:819-821. 1962-The observation that Pseudomonas natriegens utilizes the Embden-Meyerhof pathway and the hexose monophosphate-pentose cycle only very slightly, even though the necessary enzymes are present, was explained by the existence of a sluggish system for the oxidation of reduced triphosphopyridine nucleotide (TPNH). Pyridine nucleotide transhydrogenase could not be detected in cell-free extracts. A very active system for the oxidation of reduced diphosphopyridine nucleotide (DPNH) was observed. Thus, since lactic acid is a major end product of glucose dissimilation and since the lactic dehydrogenase of P. natriegens does not utilize DPNH as cofactor, the Embden-Meyerhof pathway apparently operates aerobically by direct oxidation of DPNH, presumably by coupling with the terminal oxidase system rather than by coupling to synthetic reactions requiring DPNH as cofactor. A TPNH-specific glutathione reductase was detected which was inhibited by adenosine-2'-monophosphate.  相似文献   

15.
Ubiquinone (Coenzyme Q) and similar compounds can be demonstrated in tissue sections by means of a system using three redox couples. The last of these involves the reduction of a tetrazolium salt to its formazan. Using glutaraldebyde fixed blocks of rat heart muscle the final product has been demonstrated, in and on the surface of the mitochondria, as strongly electron opaque deposits 0.1 to 0.3 microns across. These results offer confirmation of biochemical and light microscopical observations on the localisation of ubiquinone. The secondary development reactions employed may be useful for the conversion of compounds other than formazans to electron opaque material.In receipt of a Research Grant from the British Heart Foundation.  相似文献   

16.
Summary Histochemical data are presented concerning distributions of succinic dehydrogenase (SD), lactic dehydrogenase (LD), diphosphopyridine nucleotide diaphorase (DPND), triphosphopyridine nucleotide diaphorase (TPND) and glucose-6-phosphate dehydrogenase (G-6-PD) in the pancreas from the American variety of obese-hyperglycemic mice (AO-mice) and their lean litter mates (AN-mice).A high LD activity was found in the exocrine parenchyma, while the reaction in the islet tissue and the duct epithelium was only weak. A considerable reaction for DPND was noted throughout the pancreas. SD activity was slightly more pronounced in the acinar tissue and duct epithelium as compared to the islet tissue, where only a moderate activity appeared. Strong reactions for TPND and G-6-PD were found in the islet cells and duct epithelium, while the activity in the exocrine parenchyma was less pronounced. The hyperactive islet B cells in the AO-mice showed no obvious differences in enzyme activity and distribution compared to that of the AN-mice. The enzyme pattern of the A cells could not be clearly distinguished from that in the B cells.The results suggest the existence at least in the B cells of the mice islet tissue of an active hexosemonophosphate shunt. The probable significance of the hexosemonophosphate shunt for insulin synthesis is briefly discussed.The following abbreviations are used DPN Diphosphopyridine nucleotide - DPND Diphosphopyridine nucleotide diaphorase - DPNH Diphosphopyridine nucleotide, reduced form - EM Embden-Meyerhof - G-6-PD Glucose-6-phosphate dehydrogenase - HMP Hexose monophosphate - LD Lactic dehydrogenase - MTT 3,5-diphenyl-2-(4,5-dimethyl-thiazol-2-yl) tetrazolium bromide - Nitro-BT 2,2-di-p-nitrophenyl-5,5-diphenyl-3,3-(3,3-dimethoxy-4,4-biphenylene)-ditetrazolium chloride - PVP Polyvinyl pyrrolidone (M. W. 11 000) - SD Succinic dehydrogenase - TPN Triphosphopyridine nucleotide - TPND Triphosphopyridine nucleotide diaphorase - TPNH Triphosphopyridine nucleotide, reduced form  相似文献   

17.
The coenzyme-independent dihydroorotate dehydrogenase (EC 1.3.3.1) linking the pyrimidine biosynthetic pathway to the respiratory chain, was ultracytochemically localized by the tetrazolium method in derepressed exponential-phase cultures ofSaccharomyces cerevisiae. Biochemical analysis showed a considerable variation of this enzyme activity in inverse proportion to the aeration of the yeast cultures. The assay also showed that after prefixation of yeast cells with 1% glutaraldehyde at 0°C for 20 min, approximately one-half of the enzyme activity was preserved. The cytochemical reaction mixture contained dihydroorotate (2 mmol/L), thiocarbamyl nitroblue tetrazolium (0.44 mmol/L), phenazine methosulfate (0.16 mmol/L) and KCN (1.7 mmol/L) in Tris-HCl buffer (100 mmol/L) of pH 8.0. The osmicated formazan deposits featured envelopes of mitochondria and of nuclei and were prominent in the mitochondrial inclusions and in the vacuolar membranes. The latter sites of dihydroorotate dehydrogenase activity represent biosynthetic activity in yeast vacuoles, still generally assumed to function as yeast lysosomes and storage organelles. In the light of the generally observed invasions of juvenile yeast vacuoles into mitochondria, the enzymic sites observed in mitochondrial inclusion were considered as evidence of the interactions of yeast vacuoles and mitochondria. Transfer of vacuolar membranes with dihydroorotate dehydrogenase activity into mitochondrial matrix is suggested.  相似文献   

18.
Summary The tetrazolium method for the histochemical detection of monoamine oxidase (MAO) activity in rat liver cryostat sections has been tested for its specificity and its possible use in quantification. The tetrazolium salt tetranitro blue tetrazolium is recommended for the localization of MAO activity, rather than nitro blue tetrazolium or BPST [2-(2-benzothiazolyl)-3(4-phthalhydrazidyl)-5-styryl-tetrazolium]. Hardly any formazan was produced in the absence of the substrate tryptamine and Marsilid, a specific inhibitor of MAO activity, prevented formazan production almost completely. A linear relationship between the integrated absorbance measured with a microdensitometer and either the incubation period or section thickness was obtained. We conclude that the method described in this paper can be used for the quantitative analysis of MAO activity in tissue sections of rat liver. MAO activity was found to be 20–25% higher in the periportal zone of rat liver than in the perivenous zone.  相似文献   

19.
Abstract

CHANGES IN THE ACTIVITY OF CHLOROGENIC ACID OXIDASE AND OTHER ENZYMES INVOLVED IN OXIDATION AND REDUCTION OF TPN IN AGEING POTATO TUBER SLICES. — The activation of respiration, and in particular of the pentose phosphate pathway, during incubation of potato tuber slices could depend on the increase of activity of oxidative enzymes mediating electron transfer from Gl. 6-P to oxygen.

The present report deals with the activity changes, in the first period of incubation, of the following enzymes: Gl. 6-P-dehydrogenase, TPNH-glutathione reductase, gluta-thione-dehydroascorbate reductase, chlorogenic acid oxidase and a TPNH diaphorase utilizing tetrazolium salts as electron acceptors.

The activity of all of these enzymes, with the exception of TPNH diaphorase, was found to bs, at all stages of incubation, in large excess respect that required to account for the estimated contribution of the pentose phosphate pathway to respiration.

Gl. 6-P dehydrogenase, glutathione reductase and chlorogenic oxidase activities markedly incresed during incubation; but their increase appeared to be clearly delayed (of some hours) respect that of oxygen uptake. This seems to indicate that the increase in activity of these anzymes is rather a consequence than a cause of the respiratory activation.

TPNH diaphorase showed a very low activity in the fresh slices, and it increased quite significantly already in the very first period (5 hours) of incubation. This behaviour suggests the possibility that this enzyme could limit TPNH oxidation, and thus the pentose phosphate pathway activity, and that its activation could be correlated with that of oxidative metabolism in the ageing slices. Further investigation of this hypothesis requires the identification of the natural electron acceptor of this enzyme.  相似文献   

20.
The subcellular appearance of NADPH diaphorase activity in different rat skeletal muscles has been analyzed. Both a sarcolemma-associated as well as a non-sarcolemma-associated NADPH diaphorase-dependent generation of formazan was observed. The sarcolemma-associated NADPH diaphorase staining appeared regularly in two manifestations: one observed in longitudinal sections as dotted costameres at the cell surface which accordingly appeared in transversal sections as rings surrounding the myofibre surface. At this site, nitric oxide synthase (NOS)-1 was located. The second sarcolemma-associated site of NADPH diaphorase staining was found as bundles of longitudinal-orientated stripes of hitherto unidentified origin. The non-sarcolemma-associated production of formazan was likewise manifested at two sites: the first was found regularly in longitudinal sections as intense sarcomere-like striations occurring parallel to the I-bands and indicating mitochondria. The second non-sarcolemma-associated NADPH diaphorase staining was realized as fine longitudinal filaments of variable occurrence connecting the mitochondria and presumably belonging to the sarcoplasmic reticulum. Attempts to identify single NADPH diaphorase(s) existing in skeletal muscles by incubation with specific inhibitors failed but showed the presence of two different subpopulations of NADPH diaphorases in myofibres: a urea-resistant fraction in the sarcolemma region containing NOS-1 and a non-sarcolemma-associated, urea-sensitive fraction depleted of NOS-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号