首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 708 毫秒
1.
Aflatoxin B1 (AFB1) is a potent hepatotoxic and hepatocarcinogenic mycotoxin. Reactive oxygen species are considered to participate in the main mechanism of aflatoxin toxicity. Melatonin (Mel) is a hormone which has antioxidative activities. N-acetylserotonin (NAc-5HT) is an immediate precursor of Mel. Melatonin is documented to be completely safe in humans and animals. The aim of our study was to examine the potential protective effects of Mel or NAc-5HT against lipid peroxidation (LPO), caused by AFB1 in male Wistar rats. Mel and NAc-5HT were intraperitoneally (i.p.) injected for 3 weeks in late afternoon (16:00-18:00) injections (20 mg kg(-1) BW/daily). AFB1 (50 microg kg(-1) BW/daily) was administered i.p. 6 h prior to indoleamine injections. Concentrations of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA), as an index of LPO, were measured in liver, brain, lung, testis and kidney homogenates. The level of LPO in tissue homogenates was expressed as the amount of MDA + 4-HDA (nmol) per milligram of protein. AFB1 increased LPO in the liver, lung, brain and testis, but not the kidney. The increase of LPO caused by AFB1 injections was completely prevented by either Mel or NAc-5HT in all the tissues examined. Melatonin can be considered as a protective pharmacological agent in intoxication with AFB1 and the protective effect of NAc-5HT against aflatoxin-induced LPO broadens the knowledge about its antioxidative properties.  相似文献   

2.
Our previous studies showed that sulfanilamide is a new competitive inhibitor of and can be used in the purification of lactoperoxidase (LPO, EC1.11.1.7) from milk. However, this method has some disadvantages like a lower purification factor. The aim of the present study is to improve the purification process of milk LPO from different sources. For this purpose, 16 commercial sulfanilamide derivatives were selected for inhibition studies to determine the best inhibitor of bovine LPO by calculating kinetic parameters. A cyanogen bromide-activated Sepharose 4B affinity matrix was synthesized by coupling with each competitive inhibitor. Among the inhibitors, 5-amino-2-methylbenzenesulfonamide and 2-chloro-4-sulfamoylaniline were used as ligands for the purification of LPO from bovine, buffalo, cow, and goat milks with 1059.37, 509.09, 232.55, and 161.90, and 453.12-, 151.86-, 869.00-, and 447.57-fold, respectively. Our results show that 5-amino-2-methylbenzenesulfonamide, 2-chloro-4-sulfamoylaniline, and 5-amino-1-naphthalenesulfonamide are the best inhibitors for one-step purification of the enzyme.  相似文献   

3.
A series of pyridazinone derivatives (19-34) were synthesized with an aim to synthesize safer anti-inflammatory agents. The compounds were evaluated for their anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation (LPO) actions. The percentage inhibition in edema at different time intervals indicated that compounds 20, 26, 28 and 34 exhibited good anti-inflammatory potential, comparable with that of ibuprofen (85.77%) within a range of 67.48-77.23%. The results illustrate that 5-(4-fluoro-benzyl)-3-(4-chloro-phenyl)-1,6-dihydro-6-pyridazinone (26) and 5-(4-chloro-benzyl)-3-(4-chloro-phenyl)-1,6-dihydro-6-pyridazinone (20) showed best anti-inflammatory activity. Furthermore, activity is more in case of chloro substitution as compared with methyl-substitution. The compounds synthesized were also evaluated for their ulcerogenic and LPO action and showed superior gastrointestinal safety profile along with reduction in LPO as compared with that of the ibuprofen.  相似文献   

4.
Lactoperoxidase (LPO) is found in mucosal surfaces and exocrine secretions including milk, tears, and saliva and has physiological significance in antimicrobial defense which involves (pseudo-)halide oxidation. LPO compound III (a ferrous-dioxygen complex) is known to be formed rapidly by an excess of hydrogen peroxide and could participate in the observed catalase-like activity of LPO. The present anaerobic stopped-flow kinetic analysis was performed in order to elucidate the catalytic mechanism of LPO and the kinetics of compound III formation by probing the reactivity of ferrous LPO with hydrogen peroxide and molecular oxygen. It is shown that ferrous LPO heterolytically cleaves hydrogen peroxide forming water and oxyferryl LPO (compound II). The two-electron oxidation reaction follows second-order kinetics with the apparent bimolecular rate constant being (7.2+/-0.3) x 10(4) M(-1) s(-1) at pH 7.0 and 25 degrees C. The H2O2-mediated conversion of compound II to compound III follows also second-order kinetics (220 M(-1) s(-1) at pH 7.0 and 25 degrees C). Alternatively, compound III is also formed by dioxygen binding to ferrous LPO at an apparent bimolecular rate constant of (1.8+/-0.2) x 10(5) M(-1) s(-1). Dioxygen binding is reversible and at pH 7.0 the dissociation constant (K(D)) of the oxyferrous form is 6 microM. The rate constant of dioxygen dissociation from compound III is higher than conversion of compound III to ferric LPO, which is not affected by the oxygen concentration and follows a biphasic kinetics. A reaction cycle including the redox intermediates compound II, compound III, and ferrous LPO is proposed, which explains the observed (pseudo-)catalase activity of LPO in the absence of one-electron donors. The relevance of these findings in LPO catalysis is discussed.  相似文献   

5.
A series of pyridazinone derivatives (19–34) were synthesized with an aim to synthesize safer anti-inflammatory agents. The compounds were evaluated for their anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation (LPO) actions. The percentage inhibition in edema at different time intervals indicated that compounds 20, 26, 28 and 34 exhibited good anti-inflammatory potential, comparable with that of ibuprofen (85.77%) within a range of 67.48–77.23%. The results illustrate that 5-(4-fluoro-benzyl)-3-(4-chloro-phenyl)-1,6-dihydro-6-pyridazinone (26) and 5-(4-chloro-benzyl)-3-(4-chloro-phenyl)-1,6-dihydro-6-pyridazinone (20) showed best anti-inflammatory activity. Furthermore, activity is more in case of chloro substitution as compared with methyl-substitution. The compounds synthesized were also evaluated for their ulcerogenic and LPO action and showed superior gastrointestinal safety profile along with reduction in LPO as compared with that of the ibuprofen.  相似文献   

6.
4-Hydroxynon-2-enal (4-HNE) is one of the major aldehydic products of lipid peroxidation (LPO) and is involved in a number of pathophysiological processes. Since LPO products are useful indicators for oxidative stress in vivo, a number of detection methods for LPO products in biological tissues were developed. However, none of these methods is presently used in clinical settings. In order to introduce LPO products as biomarkers in clinical studies a suitable GC-MS method for 4-HNE detection was adapted to meet clinical requirements. As one result, the minimal sample volume could be decreased to 50 microl of plasma so that the method might even be suitable for pediatric purposes. The best internal standard (I.S.) for 4-HNE detection by GC-MS 9,9,9-D(3)-4-hydroxynon-2-enal was introduced by van Kuijk et al. [Anal. Biochem., 224 (1995) 420]. However, because of its limited availability, benzaldehyde-ring-d(5), 4-hydroxybenzaldehyde, and 2,5-dihydroxybenzaldehyde were tested to find an alternative. Out of these three, 4-hydroxybenzaldehyde was shown to serve best as I.S. To examine the applicability of the adapted method, tests on the stability of 4-HNE in samples during storage were carried out. It was shown that plasma samples need to be stored at -80 degrees C or less to avoid greater loss of 4-HNE. Samples with 4-HNE concentrations close to the physiological level were shown to be stable over 22 months at -80 degrees C. The introduction of a new and easily available I.S., reduction of the sample volume, and information about sample stability provided by this study facilitate 4-HNE determination in most clinical settings.  相似文献   

7.
Selective iodination and polypeptide composition of pinocytic vesicles   总被引:30,自引:15,他引:15       下载免费PDF全文
We describe a method for the specific radioiodination of pinocytic vesicles (PVs) based upon the simultaneous endocytosis of lactoperoxidase (LPO) and glucose oxidase (GO). Initial experiments indicated that LPO was interiorized by the macrophage cell line J774 by fluid phase pinocytosis and without detectable binding to the plasma membrane (PM). Interiorization varied linearly with enzyme concentration and exposure time, was temperature dependent, and was undetectable at 4 degrees C. Employing EM cytochemistry, LPO activity was restricted to PVs after a 3- to 5-min pulse at 37 degrees C. These results formed the basis of the method for iodinating the luminal surface of PVs: 5-min exposure to both LPO and GO at 37 degrees C followed by washes and iodination (addition of 125I and glucose) at 4 degrees C. Enzyme-dependent incorporation of iodide into the polypeptides of both PV membrane and contents occurred. Several lines of evidence indicated that there was selective labeling of PV as opposed to PM. Iodination did not occur if the pinocytic uptake of LPO ad GO was inhibited by low temperature. EM autoradiography showed a cytoplasmic localization of grains, whereas a clear PM association was evident with surface labeling. LPO was iodinated only after PV labeling and was present within organelles demonstrating latency. After PV iodination, > 75% of several labeled membrane antigens could be immunoprecipitated by monoclonal antibodies only after cell lysis. In contrast, all labeled antigens were accessible to antibody on intact cells after surface labeling. The polypeptide compositions of PM and PV membrane were compared by SDS polyacrylamide gel electrophoresis and by quantitative immune precipitation using a panel of anti-J774 monoclonal antibodies. The electrophoretic profiles of iodinated proteins (15-20 bands) were strikingly similar in NP-40 lysates of both PV and PM iodinated cells. In addition, eight membrane antigens examined by immune precipitation, including the trypsin-resistant immunoglobulin (Fc) receptor and the H-2Dd histocompatibility antigen, were found to be iodinated to the same relative extents by both labeling procedures. We conclude that PV membrane is formed from a representative sample of PM polypeptide components.  相似文献   

8.
Lactoperoxidase (LPO) was purified from bovine milk using Amberlite CG 50 H+ resin, CM Sephadex C-50 ion-exchange chromatography, and Sephadex G-100 gel filtration chromatography. During the purification steps, the activity of enzyme was measured using 2,2'-azino-bis (3-ethylbenzthiazoline-6 sulfonic acid) diamonium salt (ABTS) as a chromogenic substrate at pH 6. Optimum pH and optimum temperature values for LPO were determined for ABTS, p-phenylendiamine, catechol, epinephrine, and pyrogallol as substrates, and then Km and Vmax values for the same substrate were obtained by means of Lineweaver-Burk graphics. The purification degree of the enzyme was controlled by SDS-PAGE and Rz (A412/A280) values. Km values, at optimum pH and 20 degrees C, were 0.197 mM, 0.063 mM, 0.64 mM, 25.2 mM, and 63.95 mM for p-phenylendiamine, ABTS, epinephrine, pyrogallol, and catechol, respectively. Vmax values, at optimum pH and 20 degrees C, were 3.5x10(-5) EU/mL, 4.0x10(-5) EU/mL, 5.8x10(-4) EU/mL, 8.4x10(-4) EU/mL, and 1.01x10(-3) EU/mL for the same substrates, respectively. p-Phenylendiamine was first found as a new substrate for LPO.  相似文献   

9.
10.
Mechanisms underlying Ca2+ effects on lipid peroxidation (LPO) induced in liposomes (from egg yolk lecithin) and ufasomes (from linolenic acid and methyl linolenate) with the aid of an O2-(.) -generating system (Fe2+ + ascorbate) were studied. It was shown that stimulation of LPO by low Ca2+ concentrations (10(-6)-10(-5)M) was due to its ability to release Fe2+ ions bound to negatively charged (phosphate or carboxylic) lipid groups (of lecithin or linolenic acid), thus increasing the concentration of catalytically active Fe2+. The inhibitory effect of high Ca2+ concentrations was caused by its interaction with superoxide anion radicals and was not observed in LPO systems independent of O2- generation (e.g., Fe2+ + cumol hydroperoxide).  相似文献   

11.
It was found that o-benzoquinones (oBQ) inhibit the CCl4-dependent lipid peroxidation (LPO) in rat liver microsomes in vitro. The experimental data suggest that the antioxidant effect of oBQ is not due to the ability of these substances to shunt the NADPH-dependent electron transport pathways. More likely, oBQ inhibit LPO due to the ability of their reduced forms to scavenge the free radicals which induce LPO. Based on the experimental data, it was concluded that the increasing absorption of liver lipids at 230-236 nm after administration of CCl4 is due to the accumulation of reduced hydroperoxides. This process was shown to be inhibited by oBQ.  相似文献   

12.
In this study, we examined the relative efficacies of alpha-tocopherol, N-acetyl-serotonin, and melatonin in reducing ascorbate-Fe(2+) lipid peroxidation (LPO) of rat testicular microsomes and mitochondria. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids (PUFAs) C20:4 n6 and C22:5 n6. The LPO of testicular microsomes or mitochondria produced a significant decrease of C20:4 n6 and C22:5 n6. Both long-chain PUFAs were protected when the antioxidants were incorporated either in microsomes or mitochondria. By comparison of the IC50 values obtained between alpha-tocopherol and both indolamines, it was observed that alpha-tocopherol was the most efficient antioxidant against the LPO induced by ascorbate-Fe(2+) under experimental conditions in vitro, IC50 values from the inhibition of alpha-tocopherol on the chemiluminescence were higher in microsomes (0.14 mM) than in mitochondria (0.08 mM). The protective effect observed by alpha-tocopherol in rat testis mitochondria was higher compared with microsomes, associated with the higher amount of [C20:4 n6] + [C22:5 n6] in microsomes than that in mitochondria. Melatonin and N-acetyl-serotonin were more effective in inhibiting the LPO in mitochondria than that in microsomes. Thus, a concentration of 1 mM of both indolamines was sufficient to inhibit in approximately 70% of the light emission in mitochondria, whereas a greater dosage of 10 times (10 mM) was necessary to produce the same effect in microsomes. It is proposed that the vulnerability to LPO of rat testicular microsomes and mitochondria in the presence of both indolamines is different because of the different proportion of PUFAs in these organelles.  相似文献   

13.
Oxidation of the anticancer anthracyclines doxorubicin (DXR) and daunorubicin (DNR) by lactoperoxidase(LPO)/H(2)O(2) and horseradish peroxidase(HRP)/H(2)O(2) systems in the presence and absence of nitrite (NO(2)(-)) has been investigated using spectrophotometric and EPR techniques. We report that LPO/H(2)O(2)/NO(2)(-) causes rapid and irreversible loss of anthracyclines' absorption bands, suggesting oxidative degradation of their chromophores. Both the initial rate and the extent of oxidation are dependent on both NO(2)(-) concentration and pH. The initial rate decreases when the pH is changed from 7 to 5, and the reaction virtually stops at pH 5. Oxidation of a model hydroquinone compound, 2,5-di-tert-butylhydroquinone, by LPO/H(2)O(2) is also dependent on NO(2)(-); however, in contrast to DNR and DXR, this oxidation is most efficient at pH 5, indicating that LPO/H(2)O(2)/NO(2)(-) is capable of efficiently oxidizing simple hydroquinones even in the neutral form. Oxidation of anthracyclines by HRP/H(2)O(2)/NO(2)(-) is substantially less efficient relative to that by LPO/H(2)O(2)/NO(2)(-) at either pH 5 or pH 7, most likely due to the lower rate of NO(2)(-) metabolism by HRP/H(2)O(2). EPR measurements show that interaction of anthracyclines and 2,5-di-tert-butylhydroquinone with LPO/H(2)O(2)/NO(2)(-) generates the corresponding semiquinone radicals presumably via one-electron oxidation of their hydroquinone moieties. The possible role of the (*)NO(2) radical, a putative LPO metabolite of NO(2)(-), in oxidation of these compounds is discussed. Because in vivo the anthracyclines may co-localize with peroxidases, H(2)O(2), and NO(2)(-) in tissues, their oxidation via the proposed mechanism is likely. These observations reveal a novel, peroxidase- and nitrite-dependent mechanism for the oxidative transformation of the anticancer anthracyclines, which may be pertinent to their biological activities in vivo.  相似文献   

14.
Ischemia was simulated in rat liver perfused by physiological solution. The concentration of free iron and lipid peroxidation (LPO) products was measured 1, 2, 3, 4 and 5 hours after ischemia onset. The ESR method was used to measure free iron concentration. The LPO intensity was evaluated by the TBA test and by optical density at 232 nm. The content of free iron in cytoplasm increased in the course of ischemia with an increase in the concentration of LPO products. The content of free iron in the membranes remained unchanged. It is supposed that activation of LPO in ischemia may be caused by the appearance in the cytoplasm of a large amount of free iron. This iron can be liberated from ferritin in conditions of low oxygen concentration.  相似文献   

15.
The effects of the nephrotoxic, anticancer agents cisplatin (CDDP) and carboplatin (CBDCA), and the free radical scavenger, stobadine, were investigated on lipid peroxidation (LPO) of rat kidney homogenates and phosphatidylcholine (PC) liposomes. Kidney homogenates were incubated in air at 37 degrees C for 6-48 h and lipid peroxidation was detected spectroscopically as absorbance (533 nm) of the thiobarbituric acid-malondialdehyde (TBA-MDA) complex. CDDP (0.3-10 mmol.l-1) increased LPO of the homogenate. CBDCA decreased the TBA-MDA absorbance, yet was found to interfere with MDA, TBA and/or with the TBA-MDA complex. Thus when CBDCA is involved, the TBA-MDA method for detection of LPO is not suitable. Stobadine (0.1 mmol.l-1 and 1 mmol.l-1) inhibited LPO either in the control homogenate and in the homogenate where peroxidation was increased by CDDP. The effect of CDDP and CBDCA on peroxidation of PC liposomes was monitored as oxygen consumption using a Clark-type oxygen electrode. CDDP increased but CBDCA decreased the rate of oxygen consumption during the peroxidation of liposomes induced by FeSO4. The results suggest that the effects of CDDP and CBDCA on LPO may be linked with their nephrotoxicity.  相似文献   

16.
A steady-state kinetic analysis was made of thiocyanate (SCN-) oxidation catalyzed by human peroxidase (SPO) isolated from parotid saliva. For comparative purposes, bovine lactoperoxidase (LPO) was also studied. Both enzymes followed the classical Theorell-Chance mechanism under the initial conditions [H2O2] less than 0.2mM, [SCN-] less than 10mM, and pH greater than 6.0. The pH-independent rate constants (k1) for the formation of compound I were estimated to be 8 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 5 X 10(6) M-1 s-1 (SD = 1, n = 11) for SPO. The pH-independent second-order rate constants (k4) for the oxidation of thiocyanate by compound I were estimated to be 5 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 9 X 10(6) M-1 s-1 (SD = 2, n = 11) for SPO. Both enzymes were inhibited by SCN- at pH less than 6. The pH-independent equilibrium constant (Ki) for the formation of the inhibited enzyme-SCN- complex was estimated to be 24 M-1 (SD = 12, n = 8) for LPO and 44 M-1 (SD = 4, n = 10) for SPO. An apparent pH dependence of the estimated values for k4 and Ki for both LPO and SPO was consistent with a mechanism based on assumptions that protonation of compound I was necessary for the SCN- peroxidation step, that a second protonation of compound I gave an inactive form, and that the inhibited enzyme-SCN- complex could be further protonated to give another inactive form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Newer method of thermofluorescence developed and experimentally used for identification of lipid peroxidation (LPO) products in the blood serum implied the application of 0.02 ml of studied serum onto a paper filter small disk (8mm in diameter) which was placed then on the cuvette of -38 device supplied with a heating element and thermopara. When thermopara was switched on and the blind opened, the cuvette was heated up to 120 degrees C with the heating rate of 60 degrees C per minute. A two-minute recording of fluorescence was simultaneously performed by "K4-003" self-recorder. By measuring the height of the obtained curve peak the intensity of LPO product fluorescence was determined in conditional units (one conditional unit was equal to one cm of curve peak height). A newer method identifying LPO products in the blood serum was more sensitive and time-sparing.  相似文献   

18.
Effects of estrogen hormones on lipid peroxidation (LPO) were examined in rat brain homogenates (RBHs), hippocampal HT 22 cells, rat primary neocortical cultures, and human brain homogenates (HBHs). Dose-response curves indicated half-maximal effective concentrations (EC50) of 5.5 and 5.6 mM for iron-induced LPO in RBHs and HT 22 homogenates. Incubation of living rat primary neocortical cultures with iron resulted in an EC50 of 0.5 mM, whereas culture homogenates showed an EC50 of 1.2 mM. Estrogen hormones reduced LPO in all systems: In RBHs, estrone inhibited iron-induced LPO to 74.1 +/- 5.8% of control levels (17beta-estradiol: 71.3 +/- 0.1%) at a concentration of 10 microM. In hippocampal HT 22 cell homogenates, levels of LPO were reduced to 74.8 +/- 5.5% by estrone and to 47.8 +/- 6.2% by 17beta-estradiol. In living neocortical cultures, 17beta-estradiol decreased iron-induced LPO to 79.2 +/- 4.8% and increased the survival of cultured neuronal cells. Of the other steroid compounds tested (corticosterone, progesterone, testosterone), only progesterone decreased LPO in HT 22 cell homogenates. In HBHs, LPO was dose-dependently increased by iron concentrations from 2.7 to 6.0 mM. Incubation with estrogens resulted in a dose-dependent inhibition of LPO to 53.8 +/- 8.6% with 10 microM 17beta-estradiol, whereas estrone failed to affect iron-induced LPO to a significant extent. Nonestrogenic steroids, including hydrocortisol, did not show significant effects on LPO in HBHs.  相似文献   

19.
Lactoperoxidase (LPO) is a component of milk and other external secretions. To study the influence of ingested LPO on the digestive tract, we performed DNA microarray analysis of the small intestine of mice administered LPO. LPO administration upregulated 78 genes, including genes involved in metabolism, immunity, apoptosis, and the cell cycle, and downregulated nine genes, including immunity-related genes. The most upregulated gene was FK506 binding protein 5 (FKBP5), a glucocorticoid regulating immunophilin. The upregulation of this gene was confirmed by quantitative RT-PCR in other samples. In situ hybridization revealed that expression of the FKBP5 gene in the crypt epithelial cells of the small intestine was enhanced by LPO. These results suggest that ingested LPO modulates gene expression in the small intestine and especially increases FKBP5 gene expression in the epithelial cells of the intestine.  相似文献   

20.
Lactoperoxidase (LPO) is a component of milk and other external secretions. To study the influence of ingested LPO on the digestive tract, we performed DNA microarray analysis of the small intestine of mice administered LPO. LPO administration upregulated 78 genes, including genes involved in metabolism, immunity, apoptosis, and the cell cycle, and downregulated nine genes, including immunity-related genes. The most upregulated gene was FK506 binding protein 5 (FKBP5), a glucocorticoid regulating immunophilin. The upregulation of this gene was confirmed by quantitative RT-PCR in other samples. In situ hybridization revealed that expression of the FKBP5 gene in the crypt epithelial cells of the small intestine was enhanced by LPO. These results suggest that ingested LPO modulates gene expression in the small intestine and especially increases FKBP5 gene expression in the epithelial cells of the intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号