首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Bats of the speciesNoctilio albiventris, trained to discriminate differences in target distance, emitted pairs of pulses at a rate of 7–10/s, the first a constant frequency (CF) pulse of about 8 ms duration and 75 kHz frequency, followed after about 28 ms by a CF/FM pulse having a 6 ms, 75 kHz CF component that terminates in a 2 ms FM sweep to about 57 kHz.Loud free-running artificial pulses, simulating the bat's natural CF/FM echolocation sound, interfered with distance discrimination at repetition rates exceeding 5/s. Systematic modifications in the temporal and frequency structure of the artificial pulses resulted in orderly changes in the degree of interference. Artificial pulses simulating the natural CF or FM components alone had no effect, nor did 10/s white noise pulses, although constant white noise of the same intensity masked the behavior.Interference occurred when the CF of the artificial pulses was between 52 and 77 kHz, ending with a downward FM sweep of 25 kHz from the CF. For interference to occur there was a much more critical requirement that the FM sweep begin at approximately the frequency of the CF component. The FM sweep needed to be 11 kHz or greater bandwidth. Interference occurred when the duration of the CF component of the CF/FM artificial pulse was between 2 and 30 ms, with maximal effect between 10 and 20 ms. However, a brief (2.0 ms) CF signal 2–27 ms before an isolated FM signal was as effective as a continuous CF component of the same duration.When coupled with the bat's own emissions, artificial CF/FM pulses interfered if they occurred after the bat's CF/FM pulse and before the next natural emission. A 2 ms FM sweep alone was effective in interfering with distance discrimination when it came 8–27 ms after the onset of the bat's own CF/FM pulse. Neither CF/FM nor FM artificial pulses interfered when they began during the bat's own emission. A 10 ms CF pulse alone had no effect at any time.These findings indicate thatN. albiventris uses both the CF and FM components of its short-CF/FM echolocation sound for distance discrimination. The CF onset activates a gating mechanism that, during a narrowly defined subsequent time window, enables the nervous system to process FM pulse-echo pairs for distance information, within a fairly broad frequency range, as long as the frequencies of the CF and the beginning of the FM sweep are nearly identical.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

2.
Summary Bats of the speciesNoctilio albiventris emit short-constant frequency/frequency modulated (short-CF/FM) pulses with a CF component frequency at about 75 kHz. Bats sitting on a stationary platform were trained to discriminate target distance by means of echolocation. Loud, free-running artificial pulses, simulating the bat's natural CF/FM echolocation sounds or with systematic modifications in the frequency of the sounds, were presented to the bats during the discrimination trials. When the CF component of the artificial CF/FM sound was between 72 and 77 kHz, the bats shifted the frequency of the CF component of their own echolocation sounds toward that of the artificial pulse, tracking the frequency of the artificial CF component.Bats flying within a large laboratory flight cage were also presented with artificial pulses. Bats in flight lower the frequency of their emitted pulses to compensate for Doppler shifts caused by their own flight speed and systematically shift the frequency of their emitted CF component so that the echo CF frequency returns close to that of the CF component of the artificial CF/FM pulse, over the frequency range where tracking occurs.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

3.
Summary The rufous horseshoe bat, Rhinolophus rouxi, was trained to discriminate differences in target distance. During the discrimination trials, the bats emitted complex FM/CF/FM pulses containing first harmonic and dominant second harmonic components.Loud free running artificial pulses, simulating the CF/FM part of the natural echolocation components, interfered with the ability of the bat to discriminate target distance. Changes in the frequency or frequency pattern of the artificial pulses resulted in systematic changes in the degree of interference. Interference occurred when artificial CF/FM pulses were presented at frequencies near those of the bat's own first or second harmonic components.These findings suggest that Rhinolophus rouxi uses both the first and second harmonic components of its complex multiharmonic echolocation sound for distance discrimination. For interference to occur, the sound pattern of each harmonic component must contain a CF signal followed by an FM sweep beginning near the frequency of the CF.Abbreviations CF constant frequency - FM frequency modulated  相似文献   

4.
Summary Bats of the speciesNoctilio albiventris were trained to detect the presence of a target or to discriminate differences in target distance by means of echolocation. During the discrimination trials, the bats emitted pairs of pulses at a rate of 7–10/s. The first was an 8 ms constant frequency (CF) signal at about 75 kHz. This was followed after about 28 ms by a short-constant frequency/ frequency modulated (short-CF/FM) signal composed of a 6 ms CF component at about 75 kHz terminating in a 2 ms FM component sweeping downward to about 57 kHz. There was no apparent difference in the pulse structure or emission pattern used for any of the tasks. The orientation sounds of bats flying in the laboratory and hunting prey under natural conditions follow the same general pattern but differ in interesting ways.The bats were able to discriminate a difference in target distance of 13 mm between two simultaneously presented targets and of 30 mm between single sequentially presented targets around an absolute distance of 35 cm, using a criterion of 75% correct responses.The bats were unable to detect the presence of the target or to discriminate distance in the presence of continuous white noise of 54 dB or higher SPL. Under conditions of continuous white noise, the bats increased their pulse repetition rate and the relative proportion of CF/FM pulses.The bats required a minimum of 1–2 successive CF/FM pulse-echo pairs for target detection and 2–3 to discriminate a 5 cm difference in distance. When the distance discrimination tasks were made more difficult by reducing the difference in distance between the two targets the bats needed to integrate information from a greater number of successive CF/FM pulse-echo pairs to make the discrimination.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

5.
Summary Bats of the species Rhinolophus rouxi, Hipposideros lankadiva and Eptesicus fuscus were trained to discriminate between two simultaneously presented artificial insect wingbeat targets moving at different wingbeat rates. During the discrimination trials, R. rouxi, H. lankadiva and E. fuscus emitted long-CF/FM, short-CF/FM and FM echolocation sounds respectively. R. rouxi, H. lankadiva and E. fuscus were able to discriminate a difference in wingbeat rate of 2.7 Hz, 9.2 Hz and 15.8 Hz, respectively, between two simultaneously presented targets at an absolute wingbeat rate of 60 Hz, using a criterion of 75% correct responses.The performance of the different bat species is correlated with the echolocation signal design used by each species, particularly with the presence and relative duration of a narrowband component preceding a broadband FM component. These results provide behavioral evidence supporting the hypothesis that bats that use CF/FM echolocation sounds have adaptations for the perception of insect wingbeat motion and that long-CF/FM species are more specialized for this task than short-CF/FM species.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

6.
Summary The echolocating bat,Plecotus phyllotis (Vespertilionidae), uses long-CF/FM and FM sonar sounds in different situations. The CF component in long-CF/FM sounds occurs at 27 kHz and has a duration of 20 to 200 ms. The FM component sweeps down from 24 to 12 kHz, with a prominent second harmonic from 40 to 22 kHz. This second harmonic sweep is interrupted at 28 to 25 kHz, providing a notch in the spectrum of the FM component at the CF frequency. This notch probably permits isolation of CF and FM components in echoes for separate processing, thus avoiding mutual interference with the different kinds of target information the two components convey. The FM component is also used without the CF component as a sonar sound. Two other FM orientation sounds are used when the bat is in a confined space such as a room. One contains only the second and fourth harmonics of the 24 to 12 kHz fundamental sweep, while the other contains only the fifth harmonic. This bat's repertoire of sonar sounds closely matches the hearing capacities of the genus.We thank P.H. Dolkart and W.A. Lavender, of Washington University, and the Nevada State Parks Department for their assistance. This research was supported by Grant # BMS-72-02351-A01 from the National Science Foundation.  相似文献   

7.
Summary The relationship between the orientation sounds and hearing sensitivity in the greater Japanese horseshoe bat,Rhinolophus ferrumequinum nippon was studied.An orientation pulse consisted of a constant frequency (CF) component followed by a short downward frequency-modulated (FM) component. Sometimes, an initial upward FM component preceded the CF component. Duration of pulses was about 30 ms and the CF of resting pulses (RF) averaged 65.5 kHz. The best frequency (BF) at the lowest threshold in audiograms as measured by the pinna reflex averaged 66.1 kHz. Audiograms showed remarkable sharp cut-offs on both sides near the BF. The frequency difference between the BF and the RF was about 0.6 kHz, and the RF was always below the BF. The values of RF and BF were characteristically different from those of the European subspecies,Rhinolophus ferrumequinum ferrumequinum.Abbreviations BF best frequency - CF constant frequency - FM frequency modulated - RF resting frequency  相似文献   

8.
Summary For echolocation, the mustached bat,Pteronotus parnellii rubiginosus, emits orientation sounds (pulses) and listens to echoes. Each pulse is made up of 8 components, of which 4 are constant frequencies (CF1–4) and 4 are frequency-modulated (FM1–4). Target-range information, conveyed by the time delay of the echo FM from the pulse FM, is processed in this species by specialized neurons in a part of the auditory cortex known as the FM-FM area. These cortical neurons are responsive to pulse-echo pairs at specific echo delays (Fig. 1). The essential components in the sound pair include the pulse FM1 followed by an echo FMn (n=2, 3 or 4). Downward sweeping FM1-FMn sounds that are similar to those the animal naturally hears during echolocation are the most effective in evoking facilitative responses. Most FM-FM neurons, however, still exhibit facilitative responses to stimulus pairs consisting of upward sweeping FM sounds and/or pure tones at frequencies found in FM sweeps (Figs. 2 and 3). The magnitude of facilitation is altered by changes in echo rather than pulse amplitude (Figs. 5 and 6). Neurons characterized by shorter best delays (or echoes from closer targets) do not require larger best echo amplitudes for facilitation.Abbreviations CF constant frequency - FM frequency modulation - H n CF — FM harmonics of the mustached bat biosonar signal - CF n CF components of the harmonics - FM n FM components of the harmonics - PCF n pulse CFn - ECF n echo CFn - PFM n pulse FMn - EFM n echo FMn - PH n pulse Hn - EH n echo Hn - BA best amplitude for facilitation - BD best delay for facilitation - PST peri-stimulus-time - PSTC peri-stimulus-time-cumulative - dB SPL dB re 20 Pa  相似文献   

9.
Summary The greater horseshoe bat (Rhinolophus ferrumequinum) emits echolocation sounds consisting of a long constant-frequency (CF) component preceeded and followed by a short frequency-modulated (FM) component. When an echo returns with an upward Doppler-shift, the bat compensates for the frequency-shift by lowering the emitted frequency in the subsequent orientation sounds and stabilizes the echo image. The bat can accurately store frequency-shift information during silent periods of at least several minutes. The stored frequency-shift information is not affected by tone bursts delivered during silent periods without an overlap with an emitted orientation sound. The system for storage of Doppler-shift information has properties similar to a sample and hold circuit with sampling at vocalization time and with a rather flat slewing rate for the stored frequency information.Supported by Stiftung Volkswagenwerk, grant No. 111858, Deutsche Forschungsgemeinschaft, grant No. Ne 146/7, National Science Foundation (USA), grant No. GB-40018 and the Alexander von Humboldt-Stiftung.  相似文献   

10.
A tenet of auditory scene analysis is that we can fully process only one stream of auditory information at a time. We tested this assumption in a gleaning bat, the pallid bat (Antrozous pallidus) because this bat uses echolocation for general orientation, and relies heavily on prey-generated sounds to detect and locate its prey. It may therefore encounter situations in which the echolocation and passive listening streams temporally overlap. Pallid bats were trained to a dual task in which they had to negotiate a wire array, using echolocation, and land on one of 15 speakers emitting a brief noise burst in order to obtain a food reward. They were forced to process both streams within a narrow 300 to 500 ms time window by having the noise burst triggered by the bats initial echolocation pulses as it approached the wire array. Relative to single task controls, echolocation and passive sound localization performance was slightly, but significantly, degraded. The bats also increased echolocation interpulse intervals during the dual task, as though attempting to reduce temporal overlap between the signals. These results suggest that the bats, like humans, have difficulty in processing more than one stream of information at a time.  相似文献   

11.
A stereotypical approach phase vocalization response of the lesser bulldog bat, Noctilio albiventris, to artificial echoes simulating a virtual approaching object was used to assess the ability of the bat to analyze and extract distance information from the artificial echoes. The performance of the bat was not significantly different when presented with naturally structured CF/FM echoes containing FM elements that sweep continuously from about 75-55 kHz in 4 ms or with CF/FM echoes containing FM components constructed from a series of 98 pure tone frequency steps, each with a duration of 0.04 ms. The performance of the bat remained unchanged when the duration of the tone steps was increased up to 0.08 ms but declined sharply to a level that was significantly below that seen with a naturally structured echo when the steps were 0.09 ms or longer. The performance of the bat depended on the duration of the individual tone steps, which could not exceed a specific upper limit of about 0.08 ms. The study suggests that the bats have adaptations for processing individual narrow band segments of FM signals over specific time intervals.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

12.
A stereotyped approach phase vocalization response of Noctilio albiventris to artificial echoes simulating a virtual approaching object was used to assess the ability of the bat to analyze and extract distance information from the artificial echoes. The performance of the bats depended on the temporal pattern of frequency change of the continuously sweeping frequency modulated (FM) component of the signals. When the bats were presented with a CF/FM signal containing a time-reversed upward FM sweep, they responded with approach phase behavior at a performance level that was significantly below that seen with a CF/FM signal containing a naturally structured downward FM sweep. When the FM sweep was divided into a series of brief pure tone steps, the extent to which the bats showed a difference in their capability to process upward versus downward FM sweeps depended on the difference in frequency between the pure tone steps. The bats effectively processed downward but not upward FM sweeps when the difference in frequency between pure tone frequency elements of the FM sweeps was from about 100–200 Hz, but they effectually processed both downward and upward FM sweeps when the tonal elements composing the FM sweeps were separated by more than about 200 Hz. This suggests that the ability of the bats to effectively process downward but not upward FM sweeps is based on local interactions between adjacent frequency elements of the complex sounds.Abbreviations CF constant frequency - FM frequency modulated  相似文献   

13.
Summary Cardioderma cor responded with head movements and flight toward speakers broadcasting calls of frogs and crickets which contained only sonic frequencies. Unlike the frog-eating bat,Trachops cirrhosus, they did not make contact with the speakers. Prey movements that generated sonic and ultrasonic sounds were both sufficient and necessary for the bats to localize and capture prey. Prey dragged across a glass sheet with a thin layer of water did not generate sounds and bats did not attempt to capture these prey, even with the availability of visual and echolocation cues. There was no evidence for the use of visual cues while hunting; bats did not localize prey more readily in light than darkness. Prey were presented such that their movements initially generated sounds, but then the prey moved onto the water layer of the glass sheet and sounds were eliminated. The bats emitted echolocation signals while hunting in this situation; however, the information from these signals was not utilized. The bats landed at the site that prey last made sound. These results demonstrate the importance of passive hearing for prey localization in this bat, and further suggest that when preygenerated sounds and echolocation signals offer conflicting information the bat's behavior is guided by the former.  相似文献   

14.
Tang J  Fu ZY  Wu FJ 《生理学报》2010,62(5):469-477
The effects of sound duration and sound pattern on the recovery cycles of inferior collicular (IC) neurons in constant frequency-frequency modulation (CF-FM) bats were explored in this study. Five leaf-nosed bats, Hipposideros armiger (4 males, 1 female, 43-50 g body weight), were used as subjects. The extracellular responses of IC neurons to paired sound stimuli with different duration and patterns were recorded, and the recovery was counted as the ratio of the second response to the first response. Totally, 169 sound-sensitive IC neurons were recorded in the experiment. According to the interpulse interval (IPI) of paired sounds when neurons reached 50% recovery (50% IPI), the recovery cycles of these IC neurons were classified into 3 types: fast recovery (F, the 50% IPI was less than 15 ms), short recovery (S, the 50% IPI was between 15.1 and 30 ms) and long recovery (L, the 50% IPI was more than 30 ms). When paired CF stimuli with 2 ms duration was used, the ratio of F neurons was 32.3%, and it decreased to 18.1% and 18.2% respectively when 5 and 7 ms CF stimuli were used. The ratios of S and L neurons were 41.5%, 33.7%, 29.1% and 26.2%, 48.2%, 52.7% respectively when 2, 5 and 7 ms CF stimuli were used. The average 50% IPI determined after stimulation with paired 2 ms, 5 ms and 7 ms CF sounds were (30.2 ± 27.6), (39.9 ± 29.1) and (49.4 ± 34.7) ms, respectively, and the difference among them was significant (P< 0.01). When the stimuli of paired 2 ms CF sounds were shifted to paired 2 ms FM sounds, the proportion of F, S and L neurons changed from 32.3%, 41.5%, 26.2% to 47.7%, 24.6%, 27.7%, respectively, and the average 50% IPI decreased from (30.2 ± 27.6) to (23.9 ± 19.0) ms (P< 0.05, n = 65). When paired 5+2 ms CF-FM pulses were used instead of 7 ms CF sounds, the proportion of F, S and L neurons changed from 18.2%, 29.1%, 52.7% to 29.1%, 27.3%, 43.6%, respectively, and the average 50% IPI decreased from (49.4 ± 34.7) to (36.3 ± 29.4) ms (P< 0.05, n = 55). All these results suggest that the CF and FM components in echolocation signal of CF-FM bats play different roles during bats' hunting and preying on. The FM component of CF-FM signal presenting in the terminal phase can increase the number of F type neurons and decrease the recovery cycles of IC neurons for processing high repetition echo information, which ensures the bat to analyze the target range and surface texture more accurately.  相似文献   

15.
We recorded and characterized the echolocation calls emitted by the common vampire bat Desmodus rotundus during foraging in natural habitats in Chile. Signal design typically shows multiple harmonics consisting of a brief quasi-constant frequency (QCF) component at the beginning of the pulse followed by a downward frequency modulated component. Calls are characterized by long durations (5.5 ms) and emitted as single pulses or in groups of 2–3 pulses at a repetition rate of 29 Hz. The higher frequency ranges (85–35 kHz) and the unusual QCF component that characterized multiharmonic signals of free-flying D. rotundus in Chile is a remarkable feature for acoustic identification with other Chilean bats.  相似文献   

16.
The acoustic structure of echolocation pulses emitted by Japanese pipistrellePipistrellus abramus (Temminck, 1840) bats during different phases of aerial hawking is described here for the first time. Behavioural observations of the foraging flight in conjunction with acoustical analysis of echolocation pulses indicated a flight path consisting of four distinct phases following the reconnaissance or search phase. Short (∼4.68 ms) and relatively broadband frequencymodulated (FM) pulses (∼23.55 kHz bandwidth) were emitted at a repetition rate of 15 Hz during presumed target approach. Presumed insect capture consisted of an early and a late buzz phase. Both buzz types were emitted at high repetition rates (111 Hz in early to 222 Hz in late) and consisted of very short, broadband FM pulses (1.26 ms in early to 0.3 ms in late). There was also a characteristically sharp drop in both the peak and terminal frequencies of each echolocation pulse during the transition from early to late buzz. No pulses were recorded during the final phase of foraging referred to as a “post-buzz pause”. Thus the foraging behaviour of this species consisted of five sequential phases involving four broad types of echolocation pulses.  相似文献   

17.
Summary Horseshoe bats (Rhinolophus rouxi) were deafened in their 3rd–5th postnatal week. Subsequently their vocalisations were monitored to evaluate the impact of audition on the development of echolocation pulses. Hearing impairment affected the echolocation pulses as follows: the frequency of the constant frequency (CF) component was altered by between + 4 kHz and – 14 kHz, and the dominance of the second harmonic of the pulses was neutralised by a relative increase in intensity of the first and third harmonics.A second experiment focused on possible influences of acoustical self-stimulation with echolocation pulses on the establishment of auditory fovea representation in the inferior colliculus (IC). Frequency control of echolocation pulses was disrupted by larynx denervation. Thereafter, the bats produced multiharmonic echolocation signals (4–11 harmonics) varying in frequency. IC tonotopy, however, as monitored by stereotaxic electrophysiology, showed the same developmental dynamics as seen in control specimens (Fig. 10).Both experiments indicate that throughout postnatal development echolocation pulses are under auditory feedback control, whereas maturation of the auditory fovea and shifts in its frequency tuning represent an innate process. The significance of this postnatal development might be the adjustment of the vocal motor system of each bat to the frequency of its personal auditory fovea.Abbreviations CF constant frequency - CF1, CF2, CF3 harmonics of pure tone components of the echolocation pulses - FM frequency modulation - IC inferior colliculus of the midbrain  相似文献   

18.
ABSTRACT

The peculiar acoustic structure of ultrasonic bouts of blind climbing rodents Typhlomys might provide insight on their potential function. We examined 1481 bouts consisting of 1-6 pulses; 49.7% of them were single-pulse bouts. Bout duration and inter-bout interval depended on the number of pulses per bout, whereas period from start of a previous bout to start of the next bout was constant (80.0±2.9 ms). Ultrasonic pulses (540 pulses measured in a subset of 234 bouts) were short (0.68±0.15 ms) sweeps with fundamental frequency slopes from 127.3±6.3 kHz to 64.1±4.6 kHz and peak frequency at 93.3±7.4 kHz, emitted within bouts with inter-pulse periods of 13.03±3.01 ms. Single pulses and start pulses of multi-pulse bouts were lower in frequency than other pulses of the bouts. In contrast, pulse duration was independent on pulse position within bout. Pulses of Typhlomys were reminiscent of echolocation calls of Murina and Myotis bats, but higher in frequency, much shorter, fainter, displayed a convex contour of frequency modulation and only the fundamental frequency band without harmonics and were organized in bouts, that is not characteristic for bat echolocation. Most probably, Typhlomys uses their ultrasonic pulses for call-based orientation during locomotion, including climbing and jumping among bush branches.  相似文献   

19.
Summary For echolocation,Rhinolophus ferrumequinum emits orientation sounds, each of which consists of a long constant-frequency (CF) component and short frequency-modulated (FM) components. The CF component is about 83 kHz and is used for Doppler-shift compensation. In this bat, single auditory nerve fibers and cochlear nuclear neurons tuned at about 83 kHz show low threshold and very sharp filter characteristics. The slopes of their tuning curves ranged between 1,000 and 3,500 dB/octave and their Q-10 dB values were between 20 and 400, 140 on the average (Figs. 3–5). The peripheral auditory system is apparently specialized for the reception and fine frequency analysis of the CF component in orientation sounds and Doppler-shift compensated echoes. This specialization is not due to suppression or inhibition comparable to lateral inhibition, but due to the mechanical specialization of the cochlea. Peripheral auditory neurons with the best frequency between 77 and 87 kHz showed not only on-responses, but also off-responses to tonal stimuli (Figs. 1, 2, and 6). The off-responses with a latency comparable to that of N1-off were not due to a rebound from either suppression or inhibition, but probably due to a mechanical transient occurring in the cochlea at the cessation of a tone burst.We thank Alexander von Humboldt Stiftung, Deutsche Forschungsgemeinschaft (Grant No. Ne146/6-8), Stiftung Volkswagenwerk (Grant No. 111858), and American National Science Foundation (Grant No. 40018 and BMS 75-17077) for their support for our cooperative work.  相似文献   

20.
1. A midline region of brain dorsal and anterior to the corpus callosum, presumably anterior cingulate cortex, has been explored for its role in the production of vocalization in the mustached bat, Pteronotus p. parnelli. 2. Vocalizations elicited by microstimulation were virtually indistinguishable from natural biosonar sounds. The spectral content, relative intensity of harmonic components, and durations of emitted pulses are comparable to spontaneous emissions. 3. The frequencies of elicited vocalizations were within the range typically used by the mustached bat during Doppler-shift compensation. The frequency of the second-harmonic constant-frequency component (CF2) covered the range from 57-62 kHz, but was most commonly emitted at frequencies of 59-61 kHz. 4. An increase in the frequency of vocalizations over a number of consecutive pulses towards a steady-state plateau is evident in both spontaneous vocalizations and emissions elicited by microstimulation just above threshold. Increasing the stimulus intensity caused the frequency of emissions to approach the steady state more rapidly. 5. The anterior cingulate cortex appears to be organized topographically for increasing frequency of elicited biosonar sounds along a rostrocaudal axis. The area from which biosonar emissions were elicited was overrepresented for a 2 kHz band of frequencies just below the bats' CF2 resting frequency. Audible vocalizations with a complex spectrum resembling social cries can also be elicited by microstimulation, but only in an area that is adjacent and posterior to the biosonar region. 6. Some examples of both elicited and spontaneous vocalizations contained a relative intensity pattern of the harmonic components which deviated from the typical pattern. This suggests that mustached bats are capable of actively altering the spectrum of their pulses to subserve different tasks in echolocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号