首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In smooth muscle cells, various transient, localized [Ca(2+)] changes have been observed that are thought to regulate cell function without necessarily inducing contraction. Although a great deal of effort has been put into detecting these transients and elucidating the mechanisms involved in their generation, the extent to which these transient Ca(2+) signals interact with intracellular Ca(2+)-binding molecules remains relatively unknown. To understand how the spatial and temporal characteristics of an intracellular Ca(2+) signal influence its interaction with Ca(2+)-binding proteins, mathematical models of Ca(2+) diffusion and regulation in smooth muscle cells were used to study Ca(2+) binding to prototypical proteins with one or two Ca(2+)-binding sites. Simulations with the models: (1) demonstrate the extent to which the rate constants for Ca(2+)-binding to proteins and the spatial and temporal characteristics of different Ca(2+) transients influence the magnitude and time course of the responses of these proteins to the transients; (2) predict significant differences in the responses of proteins with one or two Ca(2+)-binding sites to individual Ca(2+) transients and to trains of transients; (3) demonstrate how the kinetic characteristics determine the fidelity with which the responses of Ca(2+)-sensitive molecules reflect the magnitude and time course of transient Ca(2+) signals. Overall, this work demonstrates the clear need for complete information about the kinetics of Ca(2+) binding for determining how well Ca(2+)-binding molecules respond to different types of Ca(2+) signals. These results have important implications when considering the possible modulation of Ca(2+)- and Ca(2+)/calmodulin-dependent proteins by localized intracellular Ca(2+) transients in smooth muscle cells and, more generally, in other cell types.  相似文献   

2.
Pasche M  Matti U  Hof D  Rettig J  Becherer U 《PloS one》2012,7(5):e36416
Many regulatory steps precede final membrane fusion in neuroendocrine cells. Some parts of this preparatory cascade, including fusion and priming, are dependent on the intracellular Ca(2+) concentration ([Ca(2+)](i)). However, the functional implications of [Ca(2+)](i) in the regulation of docking remain elusive and controversial due to an inability to determine the modulatory effect of [Ca(2+)](i). Using a combination of TIRF-microscopy and electrophysiology we followed the movement of large dense core vesicles (LDCVs) close to the plasma membrane, simultaneously measuring membrane capacitance and [Ca(2+)](i). We found that a free [Ca(2+)](i) of 700 nM maximized the immediately releasable pool and minimized the lateral mobility of vesicles, which is consistent with a maximal increase of the pool size of primed LDCVs. The parameters that reflect docking, i.e. axial mobility and the fraction of LDCVs residing at the plasma membrane for less than 5 seconds, were strongly decreased at a free [Ca(2+)](i) of 500 nM. These results provide the first evidence that docking and priming occur at different free intracellular Ca(2+) concentrations, with docking efficiency being the most robust at 500 nM.  相似文献   

3.
Calcium seems to be a major second messenger involved in the regulation of prostatic cell functions, but the mechanisms underlying its control are poorly understood. We investigated spatiotemporal aspects of Ca2+ signals in the LNCaP cell line, a model of androgen-dependent prostatic cells, by using non-invasive external electric field pulses that hyperpolarize the anode facing membrane and depolarize the membrane facing the cathode. Using high-speed fluo-3 confocal imaging, we found that an electric field pulse (10-15 V/cm, 1-5 mA, 5 ms) initiated rapidly, at the hyperpolarized end of the cell, a propagated [Ca2+]i wave which spread through the cell with a constant amplitude and an average velocity of about 20 microns/s. As evidenced by the total wave inhibition either by the block of Ca2+ entry or the depletion of Ca2+ stores by thapsigargin, a specific Ca(2+)-ATPase inhibitor, the [Ca2+]i wave initiation may imply a localized Ca2+ influx linked to a focal auto-regenerative process of Ca2+ release. Using different external Ca2+ and Ca2+ entry blockers concentrations, Mn2+ quenching of fluo-3 and fura-2 fluorescence and inhibitors of InsP3 production, we found evidence that the [Ca2+]i wave progression required, in the presence of basal levels of InsP3, an interplay between Ca2+ release from InsP3-sensitive Ca2+ stores and Ca2+ influx through channels possibly activated by the [Ca2+]i rise.  相似文献   

4.
In skeletal muscle, the waveform of Ca(2+) release under clamp depolarization exhibits an early peak. Its decay reflects an inactivation, which locally corresponds to the termination of Ca(2+) sparks, and is crucial for rapid control. In cardiac muscle, both the frequency of spontaneous sparks (i.e., their activation) and their termination appear to be strongly dependent on the Ca(2+) content in the sarcoplasmic reticulum (SR). In skeletal muscle, no such role is established. Seeking a robust measurement of Ca(2+) release and a way to reliably modify the SR content, we combined in the same cells the "EGTA/phenol red" method (Pape et al., 1995) to evaluate Ca(2+) release, with the "removal" method (Melzer et al., 1987) to evaluate release flux. The cytosol of voltage-clamped frog fibers was equilibrated with EGTA (36 mM), antipyrylazo III, and phenol red, and absorbance changes were monitored simultaneously at three wavelengths, affording largely independent evaluations of Delta[H(+)] and Delta[Ca(2+)] from which the amount of released Ca(2+) and the release flux were independently derived. Both methods yielded mutually consistent evaluations of flux. While the removal method gave a better kinetic picture of the release waveform, EGTA/phenol red provided continuous reproducible measures of calcium in the SR (Ca(SR)). Steady release permeability (P), reached at the end of a 120-ms pulse, increased as Ca(SR) was progressively reduced by a prior conditioning pulse, reaching 2.34-fold at 25% of resting Ca(SR) (four cells). Peak P, reached early during a pulse, increased proportionally much less with SR depletion, decreasing at very low Ca(SR). The increase in steady P upon depletion was associated with a slowing of the rate of decay of P after the peak (i.e., a slower inactivation of Ca(2+) release). These results are consistent with a major inhibitory effect of cytosolic (rather than intra-SR) Ca(2+) on the activity of Ca(2+) release channels.  相似文献   

5.
6.
Stimulation through the antigen receptor (TCR) of T lymphocytes triggers cytosolic calcium ([Ca2+]i) oscillations that are critically dependent on Ca2+ entry across the plasma membrane. We have investigated the roles of Ca2+ influx and depletion of intracellular Ca2+ stores in the oscillation mechanism, using single-cell Ca2+ imaging techniques and agents that deplete the stores. Thapsigargin (TG; 5-25 nM), cyclopiazonic acid (CPA; 5-20 microM), and tert- butylhydroquinone (tBHQ; 80-200 microM), inhibitors of endoplasmic reticulum Ca(2+)-ATPases, as well as the Ca2+ ionophore ionomycin (5-40 nM), elicit [Ca2+]i oscillations in human T cells. The oscillation frequency is approximately 5 mHz (for ATPase inhibitors) to approximately 10 mHz (for ionomycin) at 22-24 degrees C. The [Ca2+]i oscillations resemble those evoked by TCR ligation in terms of their shape, amplitude, and an absolute dependence on Ca2+ influx. Ca(2+)- ATPase inhibitors and ionomycin induce oscillations only within a narrow range of drug concentrations that are expected to cause partial depletion of intracellular stores. Ca(2+)-induced Ca2+ release does not appear to be significantly involved, as rapid removal of extracellular Ca2+ elicits the same rate of [Ca2+]i decline during the rising and falling phases of the oscillation cycle. Both transmembrane Ca2+ influx and the content of ionomycin-releasable Ca2+ pools fluctuate in oscillating cells. From these data, we propose a model in which [Ca2+]i oscillations in T cells result from the interaction between intracellular Ca2+ stores and depletion-activated Ca2+ channels in the plasma membrane.  相似文献   

7.
The effect of extracellular pH (pHo) on the duration of calcium-dependent chloride currents (ICl(Ca] was studied in voltage clamped AtT-20 pituitary cells. ICl(Ca) was activated by Ca2+ influx through plasma membrane Ca2+ channels, which were opened by step depolarization to voltages between -20 and +60 mV. Increasing pHo from 7.3 to 8.0 reversibly prolonged ICl(Ca) tail currents in perforated patch recordings from cells bathed in both Na(+)-containing and Na(+)-free solutions. This prolongation was prevented in standard whole cell recordings when the pipette solution contained 0.5 mM EGTA. The effects of raised pHo were not due to alteration of intracellular pH, since tail current prolongation still occurred when intracellular pH was buffered at 7.3 with 80 mM HEPES. The prolongation of ICl(Ca) at pHo 8 could not be accounted for by a direct action on Ca2+ channels, since tail currents were prolonged when pHo was changed rapidly during the tail current, after all Ca2+ channels were closed. The effects of increasing pHo on ICl(Ca) also could not be explained by a direct action on Cl- channels, since changing to pHo 8 did not prolong Cl- tail currents when intracellular Ca2+ concentration [( Ca2+]i) was fixed by EGTA in whole cell recordings. Raising pHo did, however, prolong depolarization-evoked [Ca2+]i transients, measured directly with the Ca2+ indicator dye, fura-2. Taken together, these data demonstrate the presence of a Na(+)-independent, pHo-sensitive mechanism for reduction of [Ca2+]i after influx through Ca2+ channels. This mechanism is associated with the plasma membrane, and is active on a time scale that is relevant to the duration of single action potentials in these cells. We suggest that this mechanism is the plasma membrane Ca2+ ATPase.  相似文献   

8.
9.
A rise in cytosolic free Ca2+ is the immediate trigger for contraction in heart muscle. In the present study, we investigated changes of intracellular Ca2+ increased by potassium chloride (KCl) and phenylephrine (PE) under hyperglycemia in rat heart myoblast H9c2 cells (BCRC 60096), respectively. We employed the fluorescent Ca2+-indicator, fura-2, and digital imaging microscopy to measure [Ca2+]i in H9c2 cells. Cells were cultured in hyperglycemic (30 mM glucose) Dulbecco's Modified Eagle's Medium. The variation of [Ca2+]i induced by KCI and PE in hyperglycemia was examined, respectively. Moreover, tiron, one of the antioxidants, was pretreated in hyperglycemia-treated H9c2 cells to measure the role of free radicals in the changes of intracellular [Ca2+]i. An influx in intracellular Ca2+ induced by KCl or PE was observed in a dose-dependent manner and reached the highest concentration of 434 +/- 42.3 nM and 443 +/- 42.8 nM (n = 24 cells), respectively. Moreover, this increase of intracellular [Ca2+]i induced by KCl or PE was markedly reduced in cells exposed to hyperglycemia (434 +/- 42.3 vs. 1.26 +/- 0.21 nM and 443 +/- 42.8 vs. 2.54 +/- 0.25 nM, n = 24 cells, P < 0.001, respectively). Similar changes were not observed in cells received mannitol showing same osmolarity. However, the reduction of intracellular [Ca2+]i induced by hyperglycemia was abolished significantly in the presence of tiron. Our results suggest that an increase of intracellular Ca2+ by KCl or PE in heart cell was markedly reduced by hyperglycemic treatment; mediation of free radicals in this action can be considered because it was reversed in the presence of tiron.  相似文献   

10.
The egg peptide speract increases intracellular pH (pHi) and cyclic nucleotides in sperm of the sea urchin Strongylocentrotus purpuratus by a mechanism dependent on seawater Na+ but not Ca2+ (Hansbrough, J. R., and Garbers, D. L. (1981) J. Biol. Chem. 256, 2235-2241; Repaske, D. R., and Garbers, D. L. (1983) J. Biol. Chem. 258, 6025-6029). Using the Ca2+ indicators quin2 and indo-1, we show that speract stimulates a transient rise in intracellular [Ca2+] ([a2+]i) when millimolar Ca2+ is present in seawater. The rise is increased and extended by the phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine (MIX), which also enhances 22Na+ uptake with or without Ca2+. Without MIX, speract initiates a rise in [Ca2+]i that peaks within approximately 5 s and decreases with a t1/2 of approximately 9 s. Activation of Na+:H+ exchange without speract by either Na+ addition to sperm in Na+-free seawater (NaFASW) or by monensin also increases [Ca2+]i, but neither change is transient. Inhibition of Na+:H+ exchange by increased seawater [K+] prevents the rise in [Ca2+]i initiated by either speract or Na+ addition to sperm in NaFASW. Increasing pHi by adding 10 mM NH4+ or by addition of Li+ to sperm in NaFASW does not increase [Ca2+]i. The data suggest that speract binding leads to rapid activation of Na+:H+ exchange; and, as a consequence, [Ca2+] entry increases transiently through either Na+:Ca2+ exchange or else through a verapamil-insensitive Ca2+ channel. MIX prevents the inactivation of this entry mechanism.  相似文献   

11.
The beta-adrenergic agonist 1-isoproterenol (0.1 microM) evokes an acute (less than 5-10 sec) transient increase in the activity of ornithine decarboxylase (ODC), and the levels of polyamines (putrescine, spermidine, spermine) in acutely isolated rat ventricular myocytes. Isoproterenol rapidly (less than 15 sec) increases 45Ca influx and efflux, decreases [Ca2+]i, and stimulates Ca2+-dependent membrane transport (endocytosis, hexose transport, amino acid transport). The beta-adrenergic antagonist propranolol blocks isoproterenol-induced membrane transport. The ODC inhibitor alpha-difluoromethylornithine (DFMO, 5-10 mM) blocks the isoproterenol-evoked increase in ODC activity and polyamine levels and the changes in 45Ca fluxes, [Ca2+]i and membrane transport. Putrescine (0.5-1 mM) replenishes cellular polyamines and reverses the DFMO effect. These data exclude an increase in [Ca2+]i in stimulus-transport coupling, and support the hypothesis that polyamines are messengers in beta-adrenoceptor-mediated regulation of transmembrane Ca2+ fluxes, [Ca2+]i, and Ca2+-dependent membrane transport.  相似文献   

12.
13.
Hypoxic pulmonary vasoconstriction (HPV) requires influx of extracellular Ca2+ in pulmonary arterial smooth muscle cells (PASMCs). To determine whether capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCCs) contributes to this influx, we used fluorescent microscopy and the Ca2+-sensitive dye fura-2 to measure effects of 4% O2 on intracellular [Ca2+] ([Ca2+]i) and CCE in primary cultures of PASMCs from rat distal pulmonary arteries. In PASMCs perfused with Ca2+-free Krebs Ringer bicarbonate solution (KRBS) containing cyclopiazonic acid to deplete Ca2+ stores in sarcoplasmic reticulum and nifedipine to prevent Ca2+ entry through L-type voltage-operated Ca2+ channels (VOCCs), hypoxia markedly enhanced both the increase in [Ca2+]i caused by restoration of extracellular [Ca2+] and the rate at which extracellular Mn2+ quenched fura-2 fluorescence. These effects, as well as the increased [Ca2+]i caused by hypoxia in PASMCs perfused with normal salt solutions, were blocked by the SOCC antagonists SKF-96365, NiCl2, and LaCl3 at concentrations that inhibited CCE >80% but did not alter [Ca2+]i responses to 60 mM KCl. In contrast, the VOCC antagonist nifedipine inhibited [Ca2+]i responses to hypoxia by only 50% at concentrations that completely blocked responses to KCl. The increased [Ca2+]i caused by hypoxia was completely reversed by perfusion with Ca2+-free KRBS. LaCl3 increased basal [Ca2+]i during normoxia, indicating effects other than inhibition of SOCCs. Our results suggest that acute hypoxia enhances CCE through SOCCs in distal PASMCs, leading to depolarization, secondary activation of VOCCs, and increased [Ca2+]i. SOCCs and CCE may play important roles in HPV.  相似文献   

14.
Listeriolysin (LLO) is a major virulence factor of Listeria monocytogenes, a Gram-positive bacterium that can cause life-threatening diseases. Various signalling events and cellular effects, including modulation of gene expression, are triggered by LLO through unknown mechanisms. Here, we demonstrate that LLO applied extracellularly at sublytic concentrations causes long-lasting oscillations of the intracellular Ca2+ level of human embryonic kidney cells; resulting from a pulsed influx of extracellular Ca2+ through pores that are formed by LLO in the plasma membrane. Calcium influx does not require the activity of endogenous Ca2+ channels. LLO-formed pores are transient and oscillate between open and closed states. Pore formation and Ca2+ oscillations were also observed after exposure of cells to native Listeria monocytogenes. Our data identify LLO as a tool used by Listeria monocytogenes to manipulate the intracellular Ca2+ level without direct contact of the bacterium with the target cell. As Ca2+ oscillations modulate cellular signalling and gene expression, our findings provide a potential molecular basis for the broad spectrum of Ca2+-dependent cellular responses induced by LLO during Listeria infection.  相似文献   

15.
16.
巨细胞病毒感染与细胞内钙离子变化相关性研究   总被引:2,自引:0,他引:2  
袁中玉 《生命科学》2002,14(5):269-271
人类受人巨细胞病毒(HCMV)感染非常普遍,但其致病机制尚不清楚,钙是细胞内最普遍而重要的信号传导成分,它在细胞活动的各种生理生化反应和疾病的发生和发展中有重要作用,HCMV感染后对受染细胞内钙离子浓度产生明显影响,这不仅有利于HCMV在胞内的复制和成熟,而且与其致病有关。  相似文献   

17.
Isopeptides of the newly discovered peptide family, endothelins (ET), caused a concentration-dependent increase in intracellular free [Ca2+] ([Ca2+]i) in human glomerular mesangial cells. ET isopeptides and sarafotoxin S6b caused transient and sustained [Ca2+]i waveforms which resulted from mobilization of intracellular Ca2+ stores and from Ca2+ influx through a dihydropyridine-insensitive Ca2+ channel. Ca2+ signaling evoked by ET isopeptides underwent a marked adaptive, desensitization response. Although activation of protein kinase C attenuated ET-induced Ca2+ signaling, desensitization by ET isopeptides was independent of protein kinase C. High concentrations of ET-1 and ET-2 also caused oscillations of [Ca2+]i that partially depended on extracellular Ca2+. These results suggest that an increase in [Ca2+]i constitutes a common pathway of signal transduction for the ET peptide family.  相似文献   

18.
《The Journal of cell biology》1984,99(3):1167-1172
We have developed an accurate and practical method for measuring intracellular Ca2+ concentration [( Ca2+]i) in single cells in monolayer culture using the fluorescent Ca2+-binding dye quin2. Quin2 was loaded into cells as a membrane-permeant ester which is hydrolyzed in the cytoplasm to the impermeant free acid, which is the indicator form (Tsien, R.Y., T. Pozzan, and T.J. Rink, 1982, J. Cell Biol., 94:325-334). The method involves the measurement of fluorescence at 340- nm excitation (I340), where dye fluorescence is dependent on Ca2+, and at 360-nm excitation (I360), where dye fluorescence is independent of Ca2+. The ratio of these two values (I340/I360) is thus related to the concentration of Ca2+ but independent of dye concentration and can be used as a measure of [Ca2+]. To test the ratio method in the microscope, we measured [Ca2+]i in GH3 cells in monolayer culture. We found a resting [Ca2+]i of 44 +/- 28 nM (mean +/- SD, n = 34), as compared with a suspension value (Gershengorn, M., and C. Thaw, 1983, Endocrinology, 113:1522-1524) of 118 +/- 18 nM. We also measured [Ca2+]i during stimulation of the cells with thyrotropin-releasing hormone (TRH) and found a 2.4-fold increase above resting levels within 20 s, a trough at 73% of resting at 90-100 s, and a peak slightly above resting at 3 min. Depolarization of the plasma membrane with KCl produced a sustained increase in [Ca2+]i. All of these data are in good agreement with the results of Gershengorn and Thaw on suspension cultures. When measuring both resting [Ca2+]i and the effects of TRH and KCl on small groups of cells, we found some variation among experiments. Using an image intensifier-video camera, we videotaped cells during TRH stimulation. Digital image analysis of these pictures demonstrated that there was a large variation in responsiveness from cell to cell. The microscope ratio method offers the possibility of resolving regions of differing [Ca2+] within the cytoplasm.  相似文献   

19.
When spatial gradients of intracellular free [Ca2+] are present, intracellular calcium indicators that have a nonlinear response to [Ca2+] may yield an estimate of [Ca2+] that differs from the spatial average [Ca2+]. We present two rules that provide (a) general criteria to distinguish those classes of indicators that will yield an overestimate of spatial average [Ca2+] from those that will yield an underestimate, and (b) limits on the extent to which spatial average [Ca2+] might be over- or underestimated. These rules are used to interpret quantitatively the aequorin luminescence signals obtained from cardiac ventricular myocardium.  相似文献   

20.
D D Friel  R W Tsien 《Neuron》1992,8(6):1109-1125
Sympathetic neurons display robust [Ca2+]i oscillations in response to caffeine and mild depolarization. Oscillations occur at constant membrane potential, ruling out voltage-dependent changes in plasma membrane conductance. They are terminated by ryanodine, implicating Ca(2+)-induced Ca2+ release. Ca2+ entry is necessary for sustained oscillatory activity, but its importance varies within the oscillatory cycle: the slow interspike rise in [Ca2+]i requires Ca2+ entry, but the rapid upstroke does not, indicating that it reflects internal Ca2+ release. Sudden alterations in [Ca2+]o, [K+]o, or [caffeine]o produce immediate changes in d[Ca2+]i/dt and provide information about the relative rates of surface membrane Ca2+ transport as well as uptake and release by internal stores. Based on our results, [Ca2+]i oscillations can be explained in terms of coordinated changes in Ca2+ fluxes across surface and store membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号