首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 270 毫秒
1.
Maderia M  Hunsicker LM  DeRose VJ 《Biochemistry》2000,39(40):12113-12120
The hammerhead ribozyme is a catalytic RNA that requires divalent metal cations for activity under moderate ionic strength. Two important sites that are proposed to bind metal ions in the hammerhead ribozyme are the A9/G10.1 site, located at the junction between stem II and the conserved core, and the scissile phosphate (P1.1). (31)P NMR spectroscopy in conjunction with phosphorothioate substitutions is used in this study to investigate these putative metal sites. The (31)P NMR feature of a phosphorothioate appears in a unique spectral window and can be monitored for changes upon addition of metals. Addition of 1-2 equiv of Cd(2+) to the hammerhead with an A9-S(Rp) or A9-S(S)(Rp) substitution results in a 2-3 ppm upfield shift of the (31)P NMR resonance. In contrast, the P1.1-S(Rp) and P1.1-S(Sp) (31)P NMR features shift slightly and in opposite directions, with a total change in delta of 相似文献   

2.
A modified hammerhead ribozyme (R32S) with a phosphorothioate linkage between G(8) and A(9), a site that is considered to play a crucial role in catalysis, was examined by high-resolution 1H and (31)P nuclear magnetic resonance (NMR) spectroscopy. Signals due to imino protons that corresponded to stems were observed, but the anticipated signals due to imino protons adjacent to the phosphorothioate linkage were not detected and the (31)P signal due to the phosphorothioate linkage was also absent irrespective of the presence or absence of the substrate. (31)P NMR is known to reflect backbone mobility, and thus the absence of signals indicated that the introduction of sulfur at P9 had increased the mobility of the backbone near the phosphorothioate linkage. The addition of metal ions did not regenerate the signals that had disappeared, a result that implied that the structure of the core region of the hammerhead ribozyme had fluctuated even in the presence of metal ions. Furthermore, kinetic analysis suggested that most of the R32S-substrate complexes generated in the absence of Mg(2+) ions were still in an inactive form and that Mg(2+) ions induced a further conformational change that converted such complexes to an activated state. Finally, according to available NMR studies, signals due to the imino protons of the central core region that includes the P9 metal binding site were broadened or not observed, suggesting that this catalytically important region might be intrinsically flexible. Our present analysis revealed a significant change in the structure of the ribozyme upon the introduction of the single phosphorothioate linkage at P9 that is in general considered to be a conservative modification.  相似文献   

3.
We have investigated the interactions of two antibiotics, neomycin B and chlortetracycline (CTC), with the hammerhead ribozyme using two Zn(2+) cleavage sites at U4 and A9 in its catalytic core. CTC-dependent inhibition of Zn(2+) cleavage was observed in all cases. In contrast, we unexpectedly observed acceleration of A9 cleavage by neomycin under low ionic strength conditions similar to those used to study inhibition of hammerhead substrate cleavage by this antibiotic. This result provides evidence that the inhibitory mechanism of neomycin does not include competition with the metal ion bound to the A9/G10.1 metal-ion binding site, as previously proposed. Under high ionic strength conditions, optimized for Zn(2+)-dependent cleavage, we observed neomycin-dependent inhibition of cleavage at both A9 and U4. The ability of neomycin to both inhibit and accelerate Zn(2+) cleavage suggests that there is either more than one neomycin binding site or multiple binding modes at a single site in the hammerhead ribozyme. Furthermore, the accessibilities and/or affinities of disparate neomycin binding sites or binding modes are dependent on the ionic strength and the pH of the medium.  相似文献   

4.
The hammerhead ribozyme crystal structure identified a specific metal ion binding site referred to as the P9/G10.1 site. Although this metal ion binding site is approximately 20 A away from the cleavage site, its disruption is highly deleterious for catalysis. Additional published results have suggested that the pro-R(P) oxygen at the cleavage site is coordinated by a metal ion in the reaction's transition state. Herein, we report a study on Cd(2+) rescue of the deleterious phosphorothioate substitution at the cleavage site. Under all conditions, the Cd(2+) concentration dependence can be accounted for by binding of a single rescuing metal ion. The affinity of the rescuing Cd(2+) is sensitive to perturbations at the P9/G10.1 site but not at the cleavage site or other sites in the conserved core. These observations led to a model in which a metal ion bound at the P9/G10.1 site in the ground state acquires an additional interaction with the cleavage site prior to and in the transition state. A titration experiment ruled out the possibility that a second tight-binding metal ion (< 10 microM) is involved in the rescue, further supporting the single metal ion model. Additionally, weakening Cd(2+) binding at the P9/G10.1 site did not result in the biphasic binding curve predicted from other models involving two metal ions. The large stereospecific thio-effects at the P9/G10.1 and the cleavage site suggest that there are interactions with these oxygen atoms in the normal reaction that are compromised by replacement of oxygen with sulfur. The simplest interpretation of the substantial rescue by Cd(2+) is that these atoms interact with a common metal ion in the normal reaction. Furthermore, base deletions and functional group modifications have similar energetic effects on the transition state in the Cd(2+)-rescued phosphorothioate reaction and the wild-type reaction, further supporting the model that a metal ion bridges the P9/G10.1 and the cleavage site in the normal reaction (i.e., with phosphate linkages rather than phosphorothioate linkages). These results suggest that the hammerhead undergoes a substantial conformational rearrangement to attain its catalytic conformation. Such rearrangements appear to be general features of small functional RNAs, presumably reflecting their structural limitations.  相似文献   

5.
We have characterized a novel Zn2+-catalyzed cleavage site between nucleotides C3 and U4 in the catalytic core of the hammerhead ribozyme. In contrast to previously described divalent metal-ion-dependent cleavage of RNA, U4 cleavage is only observed in the presence of Zn2+. This new cleavage site has an unusual pH dependence, in that U4 cleavage products are only observed above pH 7.9 and reach a maximum yield at about pH 8.5. These data, together with the fact that no metal ion-binding site is observed in proximity to the U4 cleavage site in either of the crystal structures, point toward a pH-dependent conformational change in the hammerhead ribozyme. We have described previously Zn2+-dependent cleavage between G8 and A9 in the hammerhead ribozyme and have discovered that U4 cleavage occurs only after A9 cleavage. To our knowledge, this is the first example of sequential cleavage events as a possible regulatory mechanism in ribozymes.  相似文献   

6.
The efficacy of intracellular binding of hammerhead ribozyme to its cleavage site in target RNA is a major requirement for its use as a therapeutic agent. Such efficacy can be influenced by several factors, such as the length of the ribozyme antisense arms and mRNA secondary structures. Analysis of various IL-2 hammerhead ribozymes having different antisense arms but directed to the same site predicts that the hammerhead ribozyme target site is present within a double-stranded region that is flanked by single-stranded loops. Extension of the low cleaving hammerhead ribozyme antisense arms by nucleotides that base pair with the single-stranded regions facilitated the hammerhead ribozyme binding to longer RNA substrates (e.g. mRNA). In addition, a correlation between the in vitro and intracellular results was also found. Thus, the present study would facilitate the design of hammerhead ribozymes directed against higher order structured sites. Further, it emphasises the importance of detailed structural investigations of hammerhead ribozyme full-length target RNAs.  相似文献   

7.
The hammerhead domain is one of the smallest known ribozymes. Like other ribozymes it catalyzes site-specific cleavage of a phosphodiester bond. The hammerhead ribozyme has been the subject of a vast number of biochemical and structural studies aimed at determining the structure and mechanism of cleavage. Recently crystallographic analysis has produced a structure for the hammerhead. As the hammerhead is capable of undergoing cleavage within the crystal, it would appear that the crystal structure is representative of the catalytically active solution structure. However, the crystal structure conflicts with much of the biochemical data and reveals a catalytic metal ion binding site expected to be of very low affinity. Clearly, additional studies are needed to reconcile the discrepancies and provide a clear understanding of the structure and mechanism of the hammerhead ribozyme. Here we demonstrate that a unique crosslink can be induced in the hammerhead with 2-thiocytidine or 4-thiouridine substitution at different locations within the conserved core. Generation of the same crosslink with different modifications at different positions suggests that the structure trapped by the crosslink may be relevant to the catalytically active solution structure of the hammerhead ribozyme. As this crosslink appears to be incompatible with the crystal structure, this provides yet another indication that the active solution and crystal structures may differ significantly.  相似文献   

8.
The upstream site of cleavage of all group I self-splicing introns is identified by an absolutely conserved U.G base pair. Although a wobble C.A pair can substitute the U.G pair, all other combinations of nucleotides at this position abolish splicing, suggesting that it is an unusual RNA structure, rather than sequence, that is recognized by the catalytic intron core. RNA enzymes are metalloenzymes, and divalent metal ion binding may be an important requirement for splice site recognition and catalysis. The paramagnetic broadening of NMR resonances upon manganese binding at specific sites was used to probe the interaction between divalent metal ions and an oligonucleotide model of a group I intron ribozyme substrate. Unlike previous studies in which only imino proton resonances were monitored, we have used isotopically labelled RNA and a set of complete spectral assignments to identify the location of the divalent metal binding site with much greater detail than previously possible. Two independent metal binding sites were identified for this oligonucleotide. A first metal binding site is located in the major groove of the three consecutive G.C base pairs at the end of double helical stem. A second site is found in the major groove of the RNA double helix in the vicinity of the U.G base pair. These results suggest that metal ion coordination (or a metal bridge) and tertiary interactions identified biochemically, may be used by group I intron ribozymes for substrate recognition.  相似文献   

9.
113Cd nuclear magnetic resonance of Cd(II) alkaline phosphatases   总被引:1,自引:0,他引:1  
113Cd NMR spectra of 113Cd(II)-substituted Escherichia coli alkaline phosphatase have been recorded over a range of pH values, levels of metal site occupancy, and states of phosphorylation. Under all conditions resonances attributable to cadmium specifically bound at one or more of the three pairs of metal-binding sites (A, B, and C sites) are detected. By following changes in both the 113Cd and 31P NMR spectra of 113Cd(II)2 alkaline phosphatase during and after phosphorylation, it has been possible to assign the cadmium resonance that occurs between 140 and 170 ppm to Cd(II) bound to the A or catalytic site of the enzyme and the resonance occurring between 51 and 76 ppm to Cd(II) bound to B site, which from x-ray data is located 3.9 A from the A site. The kinetics of phosphorylation show that cadmium migration from the A site of one subunit to the B site of the second subunit follows and is a consequence of phosphate binding, thus precluding the migration as a sufficient explanation for half-of-the-sites reactivity. Rather, there is evidence for subunit-subunit interaction rendering the phosphate binding sites inequivalent. Although one metal ion, at A site, is sufficient for phosphate binding and phosphorylation, the presence of a second metal ion at B site greatly enhances the rate of phosphorylation. In the absence of phosphate, occupation of the lower affinity B and C sites produces exchange broadening of the cadmium resonances. Phosphorylation abolishes this exchange modulation. Magnesium at high concentration broadens the resonances to the point of undetectability. The chemical shift of 113Cd(II) in both A and B sites (but not C site) is different depending on the state of the bound phosphate (whether covalently or noncovalently bound) and gives separate resonances for each form. Care must be taken in attributing the initial distribution of cadmium or phosphate in the reconstituted enzyme to that of the equilibrium species in samples reconstituted from apoenzyme. Both 113Cd NMR and 31P NMR show that some conformational changes consequent to metal ion or phosphate binding require several days before the final equilibrium species is formed.  相似文献   

10.
U6 RNA is a key component of the catalytic core of the spliceosome. A metal ion essential for the first catalytic step of pre-mRNA splicing binds to the U80 Sp phosphate oxygen within the yeast U6 intramolecular stem-loop (ISL). Here we present the first structural data for U6 RNA, revealing the three-dimensional structure of the highly conserved U6 ISL. The ISL binds metal ion at the U80 site with the same stereo specificity as the intact spliceosome. The metal-binding site is adjacent to a readily protonated C.A wobble pair. Protonation of the C.A pair and metal binding are mutually antagonistic. These results support a ribozyme model for U6 RNA function and suggest a possible mechanism for the regulation of RNA splicing.  相似文献   

11.
The 13C NMR spectra at 25.2 MHz of the Zn(II) and Cu(II) complexes of the antitumor antibiotic bleomycin A2 are discussed. Complexation of the drug to Zn(II) causes 38 of the 52 resonance lines of bleomycin A2 to shift to new positions. All but ten of these shifted lines have been assigned in the Zn(II) bleomycin complex. Although the specific donor sites of the drug cannot be identified from the 13C NMR data, the analysis clearly shows that the pyrimidine-imidazole portion of the molecule is affected by chelation. This finding is in agreement with the previously reported metal-binding site of the antibiotic. The analysis also shows that carbon atoms which have large through-bond distances from the binding site can experience substantial chemical-shift changes upon metal binding. Complexation of the drug to Cu(II) eliminates 23 resonances from the spectrum of the molecule. All of these resonances emanate from carbon atoms which are located in the pyrimidine-imidazole portion of the drug.  相似文献   

12.
Horton TE  DeRose VJ 《Biochemistry》2000,39(37):11408-11416
The effects of Co(NH(3))(6)(3+) on the hammerhead ribozyme are analyzed using several techniques, including activity measurements, electron paramagnetic resonance (EPR), and circular dichroism (CD) spectroscopies and thermal denaturation studies. Co(NH(3))(6)(3+) efficiently displaces Mn(2+) bound to the ribozyme with an apparent dissociation constant of K(d app) = 22 +/- 4.2 microM in 500 microM Mn(2+) (0.1 M NaCl). Displacement of Mn(2+) coincides with Co(NH(3))(6)(3+) inhibition of hammerhead activity in 500 microM Mn(2+), reducing the activity of the WT hammerhead by approximately 15-fold with an inhibition constant of K(i) = 30.9 +/- 2.3 microM. A residual 'slow' activity is observed in the presence of Co(NH(3))(6)(3+) and low concentrations of Mn(2+). Under these conditions, a single Mn(2+) ion remains bound and has a low-temperature EPR spectrum identical to that observed previously for the highest affinity Mn(2+) site in the hammerhead ribozyme in 1 M NaCl, tentatively attributed to the A9/G10.1 site [Morrissey, S. R. , Horton, T. E., and DeRose, V. J. (2000) J. Am. Chem. Soc. 122, 3473-3481]. Circular dichroism and thermal denaturation experiments also reveal structural effects that accompany the observed inhibition of cleavage and Mn(2+) displacement induced by addition of Co(NH(3))(6)(3+). Taken together, the data indicate that a high-affinity Co(NH(3))(6)(3+) site is responsible for significant inhibition accompanied by structural changes in the hammerhead ribozyme. In addition, the results support a model in which at least two types of metal sites, one of which requires inner-sphere coordination, support hammerhead activity.  相似文献   

13.
The glmS ribozyme resides in the 5' untranslated region of glmS mRNA and functions as a catalytic riboswitch that regulates amino sugar metabolism in certain Gram-positive bacteria. The ribozyme catalyzes self-cleavage of the mRNA and ultimately inhibits gene expression in response to binding of glucosamine-6-phosphate (GlcN6P), the metabolic product of the GlmS protein. We have used nucleotide analog interference mapping (NAIM) and suppression (NAIS) to investigate backbone and nucleobase functional groups essential for ligand-dependent ribozyme function. NAIM using GlcN6P as ligand identified requisite structural features and potential sites of ligand and/or metal ion interaction, whereas NAIS using glucosamine as ligand analog revealed those sites that orchestrate recognition of ligand phosphate. These studies demonstrate that the ligand-binding site lies in close proximity to the cleavage site in an emerging model of ribozyme structure that supports a role for ligand within the catalytic core.  相似文献   

14.
Characterization of a native hammerhead ribozyme derived from schistosomes   总被引:2,自引:1,他引:1  
A recent re-examination of the role of the helices surrounding the conserved core of the hammerhead ribozyme has identified putative loop-loop interactions between stems I and II in native hammerhead sequences. These extended hammerhead sequences are more active at low concentrations of divalent cations than are minimal hammerheads. The loop-loop interactions are proposed to stabilize a more active conformation of the conserved core. Here, a kinetic and thermodynamic characterization of an extended hammerhead sequence derived from Schistosoma mansoni is performed. Biphasic kinetics are observed, suggesting the presence of at least two conformers, one cleaving with a fast rate and the other with a slow rate. Replacing loop II with a poly(U) sequence designed to eliminate the interaction between the two loops results in greatly diminished activity, suggesting that the loop-loop interactions do aid in forming a more active conformation. Previous studies with minimal hammerheads have shown deleterious effects of Rp-phosphorothioate substitutions at the cleavage site and 5' to A9, both of which could be rescued with Cd2+. Here, phosphorothioate modifications at the cleavage site and 5' to A9 were made in the schistosome-derived sequence. In Mg2+, both phosphorothioate substitutions decreased the overall fraction cleaved without significantly affecting the observed rate of cleavage. The addition of Cd2+ rescued cleavage in both cases, suggesting that these are still putative metal binding sites in this native sequence.  相似文献   

15.
Hampel KJ  Burke JM 《Biochemistry》2003,42(15):4421-4429
Tertiary folding of the hammerhead ribozyme has been analyzed by hydroxyl radical footprinting. Three hammerhead constructs with distinct noncore sequences, connectivities, and catalytic properties show identical protection patterns, in which conserved core residues (G5, A6, U7, G8, and A9) and the cleavage site (C17, G1.1, and U1.2) become reproducibly protected from nucleolytic attack by radicals. Metal ion titrations show that all protections appear together, suggesting a single folding event to a common tertiary structure, rather than an ensemble of different folds. The apparent binding constants for folding and catalysis by Mg(2+) are lower than those for Li(+) by 3 orders of magnitude, but in each case the protected sites are identical. For both Mg(2+) and Li(+), the ribozyme folds into the protected tertiary structure at significantly lower cation concentrations than those required for cleavage. The sites of protection include all of the sites of reduced solvent accessibility calculated from two different crystal structures, including both core and noncore nucleotides. In addition, experimentally observed protected sites include additional sequences adjacent to those predicted by the crystal structures, suggesting that the solution structure may be folded into a more compact shape. A 2'-deoxy substitution at G5 abolishes all protection, indicating that the 2'-OH is essential for folding. Together, these results support a model in which low concentrations of metal ions fold the ribozyme into a stable ground state tertiary structure that is similar to the crystallographic structures, and higher concentrations of metal ions support a transient conformational change into the transition state for catalysis. These data do not themselves address the issue as to whether a large- or small-scale conformational change is required for catalysis.  相似文献   

16.
Saito H  Suga H 《Nucleic acids research》2002,30(23):5151-5159
Metal ions are essential cofactors for various ribozymes. Here we dissect the roles of metal ions in an aminoacyl-tRNA synthetase-like ribozyme (ARS ribozyme), which was evolved in vitro. This ribozyme can charge phenylalanine on tRNA in cis, where it is covalently attached to the 5′-end of tRNA (i.e. a form of precursor tRNA), as well as in trans, where it can act as a catalyst. The presence of magnesium ion is essential for this ribozyme to exhibit full catalytic activity. Metal-dependent kinetics, as well as structural mappings using Tb3+ in competition with Mg2+ or Co(NH3)63+, identified two potential metal-binding sites which are embedded near the tRNA-binding site. The high affinity metal-binding site can be filled with either Mg2+ or Co(NH3)63+ and thus the activity relies on a metal ion that is fully coordinated with water or ammonium ions. This site also overlaps with the amino acid-binding site, suggesting that the metal ion plays a role in constituting the catalytic core. The weak metal-binding site is occupied only by a metal ion(s) that can form innersphere contacts with ligands in the ribozyme and, hence, Mg2+ can enhance ribozyme activity, but Co(NH3)63+ cannot. The experiments described in this work establish the roles of metal ions that have distinct coordination properties in the ARS ribozyme.  相似文献   

17.
The geometry of metal coordination by proteins is well understood, but the evolution of metal binding sites has been less studied. Here we present a study on a small number of well-documented structural calcium and zinc binding sites, concerning how the geometry diverges between relatives, how often nonrelatives converge towards the same structure, and how often these metal binding sites are lost in the course of evolution. Both calcium and zinc binding site structure is observed to be conserved; structural differences between those atoms directly involved in metal binding in related proteins are typically less than 0.5 A root mean square deviation, even in distant relatives. Structural templates representing these conserved calcium and zinc binding sites were used to search the Protein Data Bank for cases where unrelated proteins have converged upon the same residue selection and geometry for metal binding. This allowed us to identify six "archetypal" metal binding site structures: two archetypal zinc binding sites, both of which had independently evolved on a large number of occasions, and four diverse archetypal calcium binding sites, where each had evolved independently on only a handful of occasions. We found that it was common for distant relatives of metal-binding proteins to lack metal-binding capacity. This occurred for 13 of the 18 metal binding sites we studied, even though in some of these cases the original metal had been classified as "essential for protein folding." For most of the calcium binding sites studied (seven out of eleven cases), the lack of metal binding in relatives was due to point mutation of the metal-binding residues, whilst for zinc binding sites, lack of metal binding in relatives always involved more extensive changes, with loss of secondary structural elements or loops around the binding site.  相似文献   

18.
Structure-function relationships in RNA and RNP enzymes: recent advances   总被引:3,自引:0,他引:3  
Hoogstraten CG  Sumita M 《Biopolymers》2007,87(5-6):317-328
The structural biology of ribozymes and ribonucleoprotein (RNP) enzymes is now sufficiently advanced that a true dialogue between structural and functional studies is possible. In this review, we consider three important systems in which an integration of structural and biochemical data has recently led to major advances in mechanistic understanding. In the hammerhead ribozyme, application-driven biochemical studies led to the discovery of a key structural interaction that had been omitted from previously-studied constructs. A new crystal structure of the resulting, tertiary-stabilized hammerhead has resolved a remarkable number of longstanding paradoxes in the structure-function relationship of this ribozyme. In the Group I intron ribozyme, a flurry of high-resolution structures has largely confirmed, but in some cases refined or challenged, a detailed model of a metalloenzyme active site that had previously been derived by meticulous quantitative metal ion rescue experiments. Finally, for the peptidyl transferase center of the ribosome, recent biochemical and chemical results motivated by the pioneering crystal structures have suggested a picture of a catalytic mechanism dominated by proximity and orientation effects and substrate-assisted catalysis. These results refocus attention on catalysis as a property of the integrated RNP machinery as a whole, as opposed to a narrow concern with the RNA functional groups in immediate contact with the reactive center.  相似文献   

19.
M Koizumi  E Ohtsuka 《Biochemistry》1991,30(21):5145-5150
Mg2+ is important for the RNase activity of the hammerhead ribozyme. To investigate the binding properties of Mg2+ to the hammerhead ribozyme, cleavage rates and CD spectra for substrates containing inosine or guanosine at the cleavage site were measured. The 2-amino group of this guanosine interfered with the rate of the cleavage reaction and did not affect the amount of Mg2+ bound to the hammerhead RNA. The kinetics and CD spectra for chemically synthesized oligoribonucleotides with a Sp or Rp phosphorothioate diester bond at the cleavage site indicated that 1 mol of Mg2+ binds to the pro-R oxygen of phosphate. The binding constant for Mg2+ was about 10(4) M-1, which represents outer-sphere complexation. The hammerhead ribozyme catalyzes the cleavage reaction via an in-line pathway. This mechanism has been proved for RNA cleavage by RNase A by using a modified oligonucleotide that has an Sp phosphorothionate bond at the cleavage site. From these results, we present the reaction pathway and a model for Mg2+ binding to the hammerhead ribozyme.  相似文献   

20.
The glmS ribozyme is a catalytic RNA that self-cleaves at its 5'-end in the presence of glucosamine 6-phosphate (GlcN6P). We present structures of the glmS ribozyme from Thermoanaerobacter tengcongensis that are bound with the cofactor GlcN6P or the inhibitor glucose 6-phosphate (Glc6P) at 1.7 A and 2.2 A resolution, respectively. The two structures are indistinguishable in the conformations of the small molecules and of the RNA. GlcN6P binding becomes apparent crystallographically when the pH is raised to 8.5, where the ribozyme conformation is identical with that observed previously at pH 5.5. A key structural feature of this ribozyme is a short duplex (P2.2) that is formed between sequences just 3' of the cleavage site and within the core domain, and which introduces a pseudoknot into the active site. Mutagenesis indicates that P2.2 is required for activity in cis-acting and trans-acting forms of the ribozyme. P2.2 formation in a trans-acting ribozyme was exploited to demonstrate that N1 of the guanine at position 1 contributes to GlcN6P binding by interacting with the phosphate of the cofactor. At neutral pH, RNAs with adenine, 2-aminopurine, dimethyladenine or purine substitutions at position 1 cleave faster with glucosamine than with GlcN6P. This altered cofactor preference provides biochemical support for the orientation of the cofactor within the active site. Our results establish two features of the glmS ribozyme that are important for its activity: a sequence within the core domain that selects and positions the cleavage-site sequence, and a nucleobase at position 1 that helps position GlcN6P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号