首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J C Markley  F Godde  S T Sigurdsson 《Biochemistry》2001,40(46):13849-13856
We describe a new RNA cleavage motif, found in the hammerhead ribozyme. Cleavage occurs between nucleotides G8 and A9, yielding a free 5'-hydroxyl group and a 2',3'-cyclic phosphate. This cleavage is dependent upon divalent metal ions and is the first evidence for a metalloribozyme known to show preference for Zn(2+). Cleavage is also observed in the presence of Ni(2+), Co(2+), Mn(2+), Cd(2+), and Pb(2+), while negligible cleavage was detected in the presence of the alkaline-earth metal ions Mg(2+), Ca(2+), Sr(2+), and Ba(2+). A linear relationship between the logarithm of the rate and pH was observed for the Zn(2+)-dependent cleavage, which is indicative of proton loss in the cleavage mechanism, either prior to or in the rate-determining step. We postulate that a zinc hydroxide complex, bound to the known A9/G10.1 metal ion binding site, abstracts the proton from the 2'-hydroxyl group of G8, which attacks the A9 phosphate and initiates cleavage. This hypothesis is supported by a previously reported crystal structure [Murray, J. B., Terwey, D. P., Maloney, L., Karpeisky, A., Usman, N., Beigelman, L., and Scott, W. G. (1998) Cell 92, 665-673], which shows the conformation required for RNA cleavage and proximity of the 2'-hydroxyl group to the metal ion complex.  相似文献   

2.
Tetanus toxin was shown to contain a metal-binding site for zinc and copper. Equilibrium dialysis binding experiments using 65Zn indicated an association constant of 9-15 microM, with one zinc-binding site/toxin molecule. The zinc-binding site was localized to the toxin light chain as determined by binding of 65Zn to the light chain but not to the heavy chain after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to Immobilon membranes. Copper was an efficient inhibitor of 65Zn binding to tetanus toxin and caused two peptide bond cleavages in the toxin light chain in the presence of ascorbate. These metal-catalyzed oxidative cleavages were inhibited by the presence of zinc. Partial characterization of metal-catalyzed oxidative modifications of a peptide based on a putative metal-binding site (HELIH) in the toxin light chain was used to map the metal-binding site in the protein.  相似文献   

3.
The hammerhead ribozyme crystal structure identified a specific metal ion binding site referred to as the P9/G10.1 site. Although this metal ion binding site is approximately 20 A away from the cleavage site, its disruption is highly deleterious for catalysis. Additional published results have suggested that the pro-R(P) oxygen at the cleavage site is coordinated by a metal ion in the reaction's transition state. Herein, we report a study on Cd(2+) rescue of the deleterious phosphorothioate substitution at the cleavage site. Under all conditions, the Cd(2+) concentration dependence can be accounted for by binding of a single rescuing metal ion. The affinity of the rescuing Cd(2+) is sensitive to perturbations at the P9/G10.1 site but not at the cleavage site or other sites in the conserved core. These observations led to a model in which a metal ion bound at the P9/G10.1 site in the ground state acquires an additional interaction with the cleavage site prior to and in the transition state. A titration experiment ruled out the possibility that a second tight-binding metal ion (< 10 microM) is involved in the rescue, further supporting the single metal ion model. Additionally, weakening Cd(2+) binding at the P9/G10.1 site did not result in the biphasic binding curve predicted from other models involving two metal ions. The large stereospecific thio-effects at the P9/G10.1 and the cleavage site suggest that there are interactions with these oxygen atoms in the normal reaction that are compromised by replacement of oxygen with sulfur. The simplest interpretation of the substantial rescue by Cd(2+) is that these atoms interact with a common metal ion in the normal reaction. Furthermore, base deletions and functional group modifications have similar energetic effects on the transition state in the Cd(2+)-rescued phosphorothioate reaction and the wild-type reaction, further supporting the model that a metal ion bridges the P9/G10.1 and the cleavage site in the normal reaction (i.e., with phosphate linkages rather than phosphorothioate linkages). These results suggest that the hammerhead undergoes a substantial conformational rearrangement to attain its catalytic conformation. Such rearrangements appear to be general features of small functional RNAs, presumably reflecting their structural limitations.  相似文献   

4.
Cryoenzymology of the hammerhead ribozyme.   总被引:1,自引:0,他引:1       下载免费PDF全文
The technique of cryoenzymology has been applied to the hammerhead ribozyme in an attempt to uncover a structural rearrangement step prior to cleavage. Several cryosolvents were tested and 40% (v/v) methanol in water was found to perturb the system only minimally. This solvent allowed the measurement of ribozyme activity between 30 and -33 degrees C. Eyring plots are linear down to -27 degrees C, but a drastic reduction in activity occurs below this temperature. However, even at extremely low temperatures, the rate is still quite pH dependent, suggesting that the chemical step rather than a structural rearrangement is still rate-limiting. The nonlinearity of the Eyring plot may be the result of a transition to a cold-denatured state or a glassed state.  相似文献   

5.
Available evidence suggests that Mg2+ ions are involved in reactions catalyzed by hammerhead ribozymes. However, the activity in the presence of exclusively monovalent ions led us to question whether divalent metal ions really function as catalysts when they are present. We investigated ribozyme activity in the presence of high levels of Mg2+ ions and the effects of Li+ ions in promoting ribozyme activity. We found that catalytic activity increased linearly with increasing concentrations of Mg2+ ions and did not reach a plateau value even at 1 M Mg2+ ions. Furthermore, this dependence on Mg2+ ions was observed in the presence of a high concentration of Li+ ions. These results indicate that the Mg2+ ion is a very effective cofactor but that the affinity of the ribozyme for a specific Mg2+ ion is very low. Moreover, cleavage by the ribozyme in the presence of both Li+ and Mg2+ ions was more effective than expected, suggesting the existence of a new reaction pathway—a cooperative pathway—in the presence of these multiple ions, and the possibility that a Mg2+ ion with weak affinity for the ribozyme is likely to function in structural support and/or act as a catalyst.  相似文献   

6.
Specificity of hammerhead ribozyme cleavage.   总被引:3,自引:0,他引:3       下载免费PDF全文
To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths.  相似文献   

7.
Recent developments in the hammerhead ribozyme field.   总被引:9,自引:0,他引:9       下载免费PDF全文
Developments in the hammerhead ribozyme field during the last two years are reviewed here. New results on the specificity of this ribozyme, the mechanism of its action and on the question of metal ion involvement in the cleavage reaction are discussed. To demonstrate the potential of ribozyme technology examples of the application of this ribozyme for the inhibition of gene expression in cell culture, in animals, as well as in plant models are presented. Particular emphasis is given to critical steps in the approach, including RNA site selection, delivery, vector development and cassette construction.  相似文献   

8.
Inhibition of the hammerhead ribozyme by neomycin.   总被引:9,自引:2,他引:7       下载免费PDF全文
A series of antibiotics was tested for stimulation or inhibition of the hammerhead ribozyme cleavage reaction. Neomycin was found to be a potent inhibitor of the reaction with a Kl of 13.5 microM. Two hammerheads with well-characterized kinetics were used to determine which steps in the reaction mechanism were inhibited by neomycin. The data suggest that neomycin interacts preferentially with the enzyme-substrate complex and that this interaction leads to a reduction in the cleavage rate by stabilizing the ground state of the complex and destabilizing the transition state of the cleavage step. A comparison of neomycin with other aminoglycosides and inhibitors of hammerhead cleavage implies that the ammonium ions of neomycin are important for the antibiotic-hammerhead interaction.  相似文献   

9.
In the presence of magnesium ions, cleavage by the hammerhead ribozyme RNA at a specific residue leads to 2'3'-cyclic phosphate and 5'-OH extremities. In the cleavage reaction an activated ribose 2'-hydroxyl group attacks its attached 3'-phosphate. Molecular dynamics simulations of the crystal structure of the hammerhead ribozyme, obtained after flash-freezing of crystals under conditions where the ribozyme is active, provide evidence that a mu-bridging OH-ion is located between two Mg2+ions close to the cleavable phosphate. Constrained simulations show further that a flip from the C3'- endo to the C2'- endo conformation of the ribose at the cleavable phosphate brings the 2'-hydroxyl in proximity to both the attacked phosphorous atom and the mu-bridging OH-ion. Thus, the simulations lead to a detailed new insight into the mechanism of hammerhead ribozyme cleavage where a mu-hydroxo bridged magnesium cluster, located on the deep groove side, provides an OH-ion that is able to activate the 2'-hydroxyl nucleophile after a minor and localized conformational change in the RNA.  相似文献   

10.
Probing the hammerhead ribozyme structure with ribonucleases.   总被引:2,自引:0,他引:2       下载免费PDF全文
Susceptibility to RNase digestion has been used to probe the conformation of the hammerhead ribozyme structure prepared from chemically synthesised RNAs. Less than about 1.5% of the total sample was digested to obtain a profile of RNase digestion sites. The observed digestion profiles confirmed the predicted base-paired secondary structure for the hammerhead. Digestion profiles of both cis and trans hammerhead structures were nearly identical which indicated that the structural interactions leading to self-cleavage were similar for both systems. Furthermore, the presence or absence of Mg2+ did not affect the RNase digestion profiles, thus indicating that Mg2+ did not modify the hammerhead structure significantly to induce self-cleavage. The base-paired stems I and II in the hammerhead structure were stable whereas stem III, which was susceptible to digestion, appeared to be an unstable region. The single strand domains separating the stems were susceptible to digestion with the exception of sites adjacent to guanosines; GL2.1 in the stem II loop and G12 in the conserved GAAAC sequence, which separates stems II and III. The absence of digestion at GL2.1 in the stem II hairpin loop of the hammerhead complex was maintained in uncomplexed ribozyme and in short oligonucleotides containing only the stem II hairpin region. In contrast, the G12 site became susceptible when the ribozyme was not complexed with its substrate. Overall the results are consistent with the role of Mg2+ in the hammerhead self-cleavage reaction being catalytic and not structural.  相似文献   

11.
Facilitators are oligonucleotides capable of affecting hammerhead ribozyme activity by interacting with the substrate at the termini of the ribozyme. Facilitator effects were determined in vitro using a system consisting of a ribozyme with 7 nucleotides in every stem sequence and two substrates with inverted facilitator binding sequences. The effects of 9mer and 12mer RNA as well as DNA facilitators which bind either adjacent to the 3'- or 5'-end of the ribozyme were investigated. A kinetic model was developed which allows determination of the apparent dissociation constant of the ribozyme-substrate complex from single turnover reactions. We observed a decreased dissociation constant of the ribozyme-substrate complex due to facilitator addition corresponding to an additional stabilization energy of delta delta G=-1.7 kcal/mol with 3'-end facilitators. The cleavage rate constant was increased by 3'-end facilitators and decreased by 5'-end facilitators. Values for Km were slightly lowered by all facilitators and kcat was increased by 3'-end facilitators and decreased by 5'-end facilitators in our system. Generally the facilitator effects increased with the length of the facilitators and RNA provided greater effects than DNA of the same sequence. Results suggest facilitator influences on several steps of the hammerhead reaction, substrate association, cleavage and dissociation of products. Moreover, these effects are dependent in different manners on ribozyme and substrate concentration. This leads to the conclusion that there is a concentration dependence whether activation or inhibition is caused by facilitators. Conclusions are drawn with regard to the design of hammerhead ribozyme facilitator systems.  相似文献   

12.
 Hammerhead ribozymes provide valuable tools in the field of gene therapy due to their cleavage specificity and the broad range of RNA targets. A major prerequisite for the selection of suitable ribozymes for in vivo application is represented by in vitro determination of ribozyme cleavage kinetic constants. From the experimental cleavage data, kinetic constants are usually calculated under the assumption of rapid conversion of the substrate into the ribozyme-substrate complex. However, this condition is often not satisfied for ribozymes carrying additional RNA stretches, due to cloning strategies or necessary for ribozyme expression in the cell. To overcome this problem, we propose a mathematical model which is able to calculate ribozyme kinetic constants in the case of non-rapid conversion of substrate into ribozyme-substrate complex. In addition, our system gives the opportunity to evaluate the nature of the S conversion into ES through the determination of a model parameter. The validity of the proposed model is restricted to the hypothesis of a ribozyme excess over the substrate at the beginning of the cleavage reaction and to the absence of any mass exchange with the external environment. Received: 1 February 2001 / Revised version: 1 September 2001 / Published online: 23 August 2002  相似文献   

13.
The hammerhead ribozyme undergoes a well-defined two-stage folding process induced by the sequential binding of two magnesium ions. These probably correspond to the formation of domain 2 (0-500 microM magnesium ions) and domain 1 (1-20 mM magnesium ions), respectively. In this study we have used fluorescence resonance energy transfer (FRET) to analyze the ion-induced folding of a number of variants of the hammerhead ribozyme. We find that both A14G and G8U mutations are highly destabilizing, such that these species are essentially unfolded under all conditions. Thus they appear to be blocked in the first stage of the folding process, and using uranyl-induced photocleavage we show that the core is completely accessible to this probe under these conditions. Changes at G5 do not affect the first transition but appear to provide a blockage at the second stage of folding; this is true of changes in the sugar (removal of the 2'-hydroxyl group) and base (G5C mutation, previously studied by comparative gel electrophoresis). Arrest of folding at this intermediate stage leads to a pattern of uranyl-induced photocleavage that is changed from the wild-type, but suggests a structure less open than the A14G mutant. Specific photocleavage at G5 is found only in the wild-type sequence, suggesting that this ion-binding site is formed late in the folding process. In addition to folding that is blocked at selected stages, we have also observed misfolding. Thus the A13G mutation appears to result in the ion-induced formation of a novel tertiary structure.  相似文献   

14.
The difficulties in interpreting the temperature dependence of protein enzyme reactions are well recognized. Here, the hammerhead ribozyme cleavage was investigated under single-turnover conditions between 0 and 60 degrees C as a model for RNA-catalyzed reactions. Under the adopted conditions, the chemical step appears to be rate-limiting. However, the observed rate of cleavage is affected by pre-catalytic equilibria involving deprotonation of an essential group and binding of at least one low-affinity Mg2+ion. Thus, the apparent entropy and enthalpy of activation include contributions from the temperature dependence of these equilibria, precluding a simple physical interpretation of the observed activation parameters. Similar pre-catalytic equilibria likely contribute to the observed activation parameters for ribozyme reactions in general. The Arrhenius plot for the hammerhead reaction is substantially curved over the temperature range considered, which suggests the occurrence of a conformational change of the ribozyme ground state around physiological temperatures.  相似文献   

15.
Horton TE  DeRose VJ 《Biochemistry》2000,39(37):11408-11416
The effects of Co(NH(3))(6)(3+) on the hammerhead ribozyme are analyzed using several techniques, including activity measurements, electron paramagnetic resonance (EPR), and circular dichroism (CD) spectroscopies and thermal denaturation studies. Co(NH(3))(6)(3+) efficiently displaces Mn(2+) bound to the ribozyme with an apparent dissociation constant of K(d app) = 22 +/- 4.2 microM in 500 microM Mn(2+) (0.1 M NaCl). Displacement of Mn(2+) coincides with Co(NH(3))(6)(3+) inhibition of hammerhead activity in 500 microM Mn(2+), reducing the activity of the WT hammerhead by approximately 15-fold with an inhibition constant of K(i) = 30.9 +/- 2.3 microM. A residual 'slow' activity is observed in the presence of Co(NH(3))(6)(3+) and low concentrations of Mn(2+). Under these conditions, a single Mn(2+) ion remains bound and has a low-temperature EPR spectrum identical to that observed previously for the highest affinity Mn(2+) site in the hammerhead ribozyme in 1 M NaCl, tentatively attributed to the A9/G10.1 site [Morrissey, S. R. , Horton, T. E., and DeRose, V. J. (2000) J. Am. Chem. Soc. 122, 3473-3481]. Circular dichroism and thermal denaturation experiments also reveal structural effects that accompany the observed inhibition of cleavage and Mn(2+) displacement induced by addition of Co(NH(3))(6)(3+). Taken together, the data indicate that a high-affinity Co(NH(3))(6)(3+) site is responsible for significant inhibition accompanied by structural changes in the hammerhead ribozyme. In addition, the results support a model in which at least two types of metal sites, one of which requires inner-sphere coordination, support hammerhead activity.  相似文献   

16.
Canny MD  Jucker FM  Pardi A 《Biochemistry》2007,46(12):3826-3834
The hammerhead ribozyme from Schistosoma mansoni is the best characterized of the natural hammerhead ribozymes. Biophysical, biochemical, and structural studies have shown that the formation of the loop-loop tertiary interaction between stems I and II alters the global folding, cleavage kinetics, and conformation of the catalytic core of this hammerhead, leading to a ribozyme that is readily cleaved under physiological conditions. This study investigates the ligation kinetics and the internal equilibrium between cleavage and ligation for the Schistosoma hammerhead. Single turnover kinetic studies on a construct where the ribozyme cleaves and ligates substrate(s) in trans showed up to 23% ligation when starting from fully cleaved products. This was achieved by an approximately 2000-fold increase in the rate of ligation compared to a minimal hammerhead without the loop-loop tertiary interaction, yielding an internal equilibrium that ranges from 2 to 3 at physiological Mg2+ ion concentrations (0.1-1 mM). Thus, the natural Schistosoma hammerhead ribozyme is almost as efficient at ligation as it is at cleavage. The results here are consistent with a model where formation of the loop-loop tertiary interaction leads to a higher population of catalytically active molecules and where formation of this tertiary interaction has a much larger effect on the ligation than the cleavage activity of the Schistosoma hammerhead ribozyme.  相似文献   

17.
We previously showed that the deleterious effects from introducing abasic nucleotides in the hammerhead ribozyme core can, in some instances, be relieved by exogenous addition of the ablated base and that the relative ability of different bases to rescue catalysis can be used to probe functional aspects of the ribozyme structure [Peracchi et al., Proc NatAcad Sci USA 93:11522]. Here we examine rescue at four additional positions, 3, 9, 12 and 13, to probe transition state interactions and to demonstrate the strengths and weaknesses of base rescue as a tool for structure-function studies. The results confirm functional roles for groups previously probed by mutagenesis, provide evidence that specific interactions observed in the ground-state X-ray structure are maintained in the transition state, and suggest formation in the transition state of other interactions that are absent in the ground state. In addition, the results suggest transition state roles for some groups that did not emerge as important in previous mutagenesis studies, presumably because base rescue has the ability to reveal interactions that are obscured by local structural redundancy in traditional mutagenesis. The base rescue results are complemented by comparing the effects of the abasic and phenyl nucleotide substitutions. The results together suggest that stacking of the bases at positions 9, 13 and 14 observed in the ground state is important for orienting other groups in the transition state. These findings add to our understanding of structure-function relationships in the hammerhead ribozyme and help delineate positions that may undergo rearrangements in the active hammerhead structure relative to the ground-state structure. Finally, the particularly efficient rescue by 2-methyladenine at position 13 relative to adenine and other bases suggests that natural base modifications may, in some instance, provide additional stability by taking advantage of hydrophobic interactions in folded RNAs.  相似文献   

18.
In human monocytic cell lines, tumor necrosis factor alpha (TNF alpha) expression is induced by phorbol myristate acetate (PMA). We have identified positive and negative cis-acting elements in the TNF alpha promoter by deletion analysis. Here we present the initial characterization of the repressor element. The repressor element was shown to function in either orientation and at various distances upstream from the positive element of the TNF alpha promoter. The TNF alpha repressor site (TRS) has been localized to a 25 bp region between base pairs -254 and -230 in the promoter. This region contains a 10 bp sequence with homology to the binding site of the activator protein AP-2. Mutation of the 6 C's of this 10 bp AP-2-like site abolish TRS repressor function. However, this AP-2-like site is not a binding site for AP-2 protein based on gel retardation analysis. In addition, a well-characterized AP-2-binding site placed upstream of the positive element of the TNF alpha gene did not cause repression. Therefore, this repression is very likely mediated by a novel protein(s) which interacts with the AP-2 consensus site in the TRS.  相似文献   

19.
Characterization of a native hammerhead ribozyme derived from schistosomes   总被引:2,自引:1,他引:1  
A recent re-examination of the role of the helices surrounding the conserved core of the hammerhead ribozyme has identified putative loop-loop interactions between stems I and II in native hammerhead sequences. These extended hammerhead sequences are more active at low concentrations of divalent cations than are minimal hammerheads. The loop-loop interactions are proposed to stabilize a more active conformation of the conserved core. Here, a kinetic and thermodynamic characterization of an extended hammerhead sequence derived from Schistosoma mansoni is performed. Biphasic kinetics are observed, suggesting the presence of at least two conformers, one cleaving with a fast rate and the other with a slow rate. Replacing loop II with a poly(U) sequence designed to eliminate the interaction between the two loops results in greatly diminished activity, suggesting that the loop-loop interactions do aid in forming a more active conformation. Previous studies with minimal hammerheads have shown deleterious effects of Rp-phosphorothioate substitutions at the cleavage site and 5' to A9, both of which could be rescued with Cd2+. Here, phosphorothioate modifications at the cleavage site and 5' to A9 were made in the schistosome-derived sequence. In Mg2+, both phosphorothioate substitutions decreased the overall fraction cleaved without significantly affecting the observed rate of cleavage. The addition of Cd2+ rescued cleavage in both cases, suggesting that these are still putative metal binding sites in this native sequence.  相似文献   

20.
The sTobRV(+) ribozyme consists of a small catalytic domain and two wing sequences(1). By changing its wing sequences, the ribozyme can cleave many different RNAs in a site-specific manner, functioning as an RNA restriction enzyme(1). Although relatively strong ligase activity is known to be associated with sTobRV(+) RNA(2,3), the sTobRV(+) ribozyme itself has been claimed to have no ligase activity. Here, we show the evidence that the sTobRV(+) ribozyme has the ability to rejoin its digestion products at low temperatures such as 4 degrees C. In contrast, little or no ligation product can be produced at 50 degrees C, the temperature giving the maximum digestion activity. The ligation reaction requires Mg++ ion. The first substrate (P1, see Fig.1), possessing 2',3' cyclic phosphate, must be RNA, but the second substrate (P2), required to have 5'OH, can be replaced by DNA counterparts, equal to or longer than dimer, thus making it possible to generate RNA-DNA chimeric molecules. We also show the resultant RNA-DNA chimera to be digestable by the sTobRV(+) ribozyme. RNase digestion indicates the phosphodiester linkage thus generated to be exclusively 3'-5'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号