首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The muscles of the pyloric region of the stomach of the crab,Cancer borealis, are innervated by motorneurons found in the stomatogastric ganglion (STG). Electrophysiological recording and stimulating techniques were used to study the detailed pattern of innervation of the pyloric region muscles. Although there are two Pyloric Dilator (PD) motorneurons in lobsters, previous work reported four PD motorneurons in the crab STG (Dando et al. 1974; Hermann 1979a, b). We now find that only two of the crab PD neurons innervate muscles homologous to those innervated by the PD neurons in the lobster,Panulirus interrruptus. The remaining two PD neurons innervate muscles that are innervated by pyloric (PY) neurons inP. interruptus. The innervation patterns of the Lateral Pyloric (LP), Ventricular Dilator (VD), Inferior Cardiac (IC), and PY neurons were also determined and compared with those previously reported in lobsters. Responses of the muscles of the pyloric region to the neurotransmitters, acetylcholine (ACh) and glutamate, were determined by application of exogenous cholinergic agonists and glutamate. The effect of the cholinergic antagonist, curare, on the amplitude of the excitatory junctional potentials (EJPs) evoked by stimulation of the pyloric motor nerves was measured. These experiments suggest that the differences in innervation pattern of the pyloric muscles seen in crab and lobsters are also associated with a change in the neurotransmitter active on these muscles. Possible implications of these findings for phylogenetic relations of decapod crustaceans and for the evolution of neural circuits are discussed.Abbreviations ACh acetylcholine - Carb carbamylcholine - cpv muscles of the cardio-pyloric valve - cpv7n nerve innervating muscle cpv7 - cv muscles of the ventral cardiac ossicles - cv1n nerve innervating muscle cvl - cv2n nerve innervating muscle cv2 - EJP excitatory junctional potential - IC inferior cardiac neuron - IV inferior ventricular neuron - IVN inferior ventricular nerve - LP lateral pyloric neuron - LPG lateral posterior gastric neuron - lvn lateral ventricular nerve - mvn medial ventricular nerve - p muscles of the pylorus - PD pyloric dilator neuron - PD in intrinsic PD neuron - PD ex extrinsic PD neuron - pdn pyloric dilator nerve - PY pyloric neuron - pyn pyloric nerve - STG stomatogastric ganglion - VD ventricular dilator neuron  相似文献   

2.
Activity patterns of the constituent neurons of the posterior cardiac plate-pyloric system in the stomatogastric ganglion of the mantis shrimp Squilla oratoria were studied by recording spontaneous burst discharges intracellularly from neuronal somata. These neurons were identified electrophysiologically, and synaptic connections among them were qualitatively analysed. The posterior cardiac plate constrictor, pyloric constrictor, pyloric dilator and ventricular dilator motoneurons, and the pyloric interneuron were involved in the posterior cardiac plate-pyloric system. All the cell types could produce slow burst-forming potentials which led to repetitive spike discharges. These neurons generated sequentially patterned outputs. Most commonly, the posterior cardiac plate neuron activity was followed by the activity of pyloric constrictor neurons, and then by the activity of pyloric dilator/pyloric interneuron, and ventricular dilator neurons. The motoneurons and interneuron in the posterior cardiac plate-pyloric system were connected to each other either by electrical or by inhibitory chemical synapses, and thus constructed the neural circuit characterized by a wiring diagram which was structurally similar to the pyloric circuit of decapods. The circuitry in the stomatogastric ganglion was strongly conserved during evolution between stomatopods and decapods, despite significant changes in the peripheral structure of the foregut. There were more electrical synapses in stomatopods, and more reciprocal inhibitory synapses in decapods.Abbreviations EJP excitatory junctional potential - IPSP inhibitory postsynaptic potential - CoG commissural ganglion - CPG central pattern generator - ion inferior oesophageal nerve - OG oesophageal ganglion - pcp posterior cardiac plate - son superior oesophageal nerve - STG stomatogastric ganglion - stn stomatogastric nerve - PY pyloric constrictor - PD pyloric dilator - VD ventricular dilator - AB pyloric interneuron - lvn lateral ventricular nerves - tcpm transverse cardiac plate muscle  相似文献   

3.
Summary The stomatogastric nervous system of a mantis shrimp,Squilla oratoria, is described. The motor nerves of the stomatogastric ganglion (STG) and their innervation of muscles of the posterior cardiac plate (pcp) and pyloric systems are detailed.The STG contains more than 25 neurons. It sends out one pair of major output nerves. The pcp-pyloric cycle recorded from the motor axons in this nerve consists of rhythmic bursts of several units which fire with a characteristic phase relationship to each other. The rhythm is intrinsic to the STG itself, but it is modifiable.Recordings from the peripheral nerves reveal that identifiable cardiac plate, pyloric dilator and pyloric neurons control sequential contractions of the pcp and pyloric muscles to constrict or dilate a number of their attached ossicles.Several modulatory input fibres in the stomatogastric nerve, activated via stimulation of the superior or inferior oesophageal nerve (son, ion), prime or trigger the cyclic motor outputs. The son inputs induce distinct effects on the cardiac and pcp-pyloric pattern generators, while the ion inputs, via the oesophageal ganglion, excite only the pcp-pyloric generator.On the basis of anatomical and physiological observations, the possible functions of motor neurons involved in the pcp-pyloric cycle are described with reference to opening of the pcp and pyloric channels.This stomatogastric nervous system inSquilla is compared to that in decapods which has been well analyzed.Abbreviations CG commissural ganglion - ion inferior oesophageal nerve - lvn lateral ventricular nerve - OG oesophageal ganglion - pep posterior cardiac plate - son superior oesophageal nerve - STG stomatogastric ganglion - stn stomatogastric nerve - ivn inferior ventricular nerve  相似文献   

4.
Stomatogastric musculature from crabs in the genus Cancer provides a system in which modulatory roles of peptides from the FLRFamide family can be compared. The anterior cardiac plexus (ACP) is a neuroendocrine release site within the Cancer stomatogastric nervous system that is structurally identical in C. borealis, C. productus, and C. magister but that appears to contain FLRFamide-like peptide(s) only in C. productus. We measured the effect of TNRNFLRFamide on nerve-evoked contractions of muscles that were nearby, an intermediate distance, or far from the ACP. We found the spatial pattern of FLRFamidergic modulation of muscles in C. productus to be qualitatively different than in C. borealis or C. magister. In C. productus, muscles proximal to the ACP were more responsive than distal muscles. In C. borealis, FLRFamidergic response was less dependent on muscle location. These results suggest that functionally different roles of FLRFamides in modulating stomatogastric muscle movements may have evolved in different Cancer species.  相似文献   

5.
Summary Physiological and ultrastructural studies were made of neuromuscular synapses in stomach muscles, especially two gastric mill muscles of the blue crab innervated by neurons of the stomatogastric ganglion. These muscles depolarized and contracted with application of glutamate, but not acetylcholine, whereas the dorsal dilator muscles of the pyloric region depolarized and contracted in acetylcholine, but not in glutamate. Large excitatory postsynaptic potentials (EPSP's) of 5–20 mV were recorded in the gastric mill muscles. At low frequencies of activation, individual synapses released on average about 2 quanta of transmitter for each nerve impulse. Facilitation of EPSP's after a single nerve impulse could be detected for at least 10 s. Synapses were found on enlarged terminals of the motor axon; their contact areas ranged from 0.2 m2 up to 3 m2. Both electron-lucent, round synaptic vesicles and dense-cored vesicles occurred near these synapses. A possible correlation between contact area of a synapse and output of transmitter, is discussed.Supported by grants from the National Research Council of Canada and the Muscular Dystrophy Association of Canada to H.L. Atwood and C.K. Govind. We thank Kazuko Hay, Eva Yap-Chung and Irene Kwan for technical assistance with electron microscopy and reconstruction of nerve terminals from micrographs  相似文献   

6.
The stomatogastric ganglion (STG) and the cardiac ganglion (CG) of decapod crustaceans are modulated by neuroactive substances released locally and by circulating hormones released from neuroendocrine structures including the pericardial organs (POs). Using nanoscale liquid chromatography electrospray ionization quadrupole-time-of-flight tandem mass spectrometry and direct tissue matrix-assisted laser desorption/ionization Fourier transform mass spectrometry we have identified and sequenced a novel neuropeptide, GAHKNYLRFamide (previously misassigned as KHKNYLRFamide in a study that did not employ peptide derivatization), from the POs and/or the stomatogastric nervous system (STNS) of the crabs, Cancer borealis, Cancer productus and Cancer magister. In C. borealis, exogenous application of GAHKNYLRFamide increased the burst frequency and number of spikes per burst of the isolated CG and re-initiated bursting activity in non-bursting ganglia, effects also elicited by the FMRFamide-like peptides (FLPs) SDRNFLRFamide and TNRNFLRFamide. In the intact STNS (which contains the STG), exogenous application of GAHKNYLRFamide increased the frequency of the pyloric rhythm and activated the gastric mill rhythm, effects also similar to those elicited by SDRNFLRFamide and TNRNFLRFamide. FLP-like immunoreactivity in the POs and the STNS was abolished by pre-adsorption with the synthetic GAHKNYLRFamide. Different members of the FLP family exhibited differential degradation in the presence of extracellular peptidases. Taken collectively, the amino acid sequence of GAHKNYLRFamide, the blocking of FLP-like immunostaining, and its physiological effects on the CG and STNS suggest that this peptide is a novel member of the FLP superfamily.  相似文献   

7.
Summary In the stomatogastric ganglion (STG) of Homarus gammarus, pacemaker neurons of the pyloric central pattern generator are entrained by a network oscillator (CPO) contained in the commissural ganglion. A consequence of CPO's influence is that the spontaneous pyloric period can take one of several absolute values, most commonly displaying a bimodal distribution. These discrete values correspond to different coordination modes with the CPO rhythm. Moreover, the oscillation period of pyloric pacemaker neurons varies discontinuously with their membrane potential. This behavior persists when the mean pyloric period is modified by different perfusion salines but disappears when the STG is disconnected from the anterior ganglia. Under these conditions, pyloric pacemaker neurons are deprived of CPO inputs and behave like independent oscillators whose period varies continuously as a function of the membrane potential. The modulatory pyloric suppressor neurons (PS), which are known to decrease the oscillatory capabilities of the pyloric pacemakers, can change the coordination mode between these neurons and the CPO. PS can provoke discontinuous variations in the pyloric period as a function of their firing frequency. Finally, the nonlinear behavior of the pyloric pattern generator described in Homarus also occurs in Jasus lalandii, in which the existence of a CPO has not yet been demonstrated.Abbreviations AB anterior burster neuron - ASW artificial seawater - COG commissural ganglion - CP commissural pyloric neuron - CPG central pattern generator - CPO commissural pyloric oscillator - IC inferior cardiac neuron - ivn inferior ventricular nerve - LP lateral pyloric neuron - OG esophageal ganglion - PD pyloric dilator neuron - PDn pyloric dilator nerve - PS pyloric suppressor neuron - son superior esophageal nerve - PY pylonic neuron - STG stomatogastric ganglion - stn stomatogastric nerve - vlvn ventral branch of the lateral ventricular nerve Maître de conférence à l'U.E.R. de Médecine et de Pharmacie, 2 rue Dr Marcland, 87025 Limoges Cedex, France.  相似文献   

8.
Neurotransmitters of motor neurons in the foregut muscles of an isopod Ligia exotica were identified by recording changes in membrane potential to exogenously applied glutamate and acetylcholine. The effects of antagonists, tubocurare and joro spider toxin, on excitatory junctional potentials evoked by nerve stimulation and by iontophoretic application of glutamate and acetylcholine provided additional evidence for identification. The junctional receptors were desensitized by putative neurotransmitters. Glutamate is a candidate as an excitatory neurotransmitter at the neuromuscular junctions in intrinsic muscles of the gastric mill and pylorus, and acetylcholine is a candidate in the extrinsic muscles of the gastric mill and cardiopyloric valve.  相似文献   

9.
 Motor patterns of the cardiac sac, the gastric and the pyloric network in the stomatogastric nervous system of the shrimp Penaeus japonicus, the most primitive decapod species, were studied. Single neurons can switch from the gastric or the pyloric pattern to the cardiac sac pattern. Some of the pyloric neurons fire with the gastric pattern. All of the gastric neurons fire with the pyloric pattern, unlike those in reptantians. Proctolin activates and modulates the cardiac sac and the pyloric rhythm, and promotes reconfiguration of the networks. Neurons of the three networks have so many interconnections that they construct a multifunctional neural network like those in Cancer. This network may function in different configurations under the appropriate conditions. Several modes of interactions between the networks found in different reptantian species can apply to the penaeidean shrimp. Such interactions are general features of the stomatogastric nervous system in decapods. Phylogenetic differences among the decapod infraorders are seen in the number and orientation of muscles and the innervation pattern of muscles. The multifunctional networks have existed in the most primitive decapod species, and types of configurations of the networks would have evolved to produce a wide range of motor patterns as the foregut structure has become complex. Accepted: 26 October 1999  相似文献   

10.
In semi‐intact preparations of the crab Cancer pagurus the normal output from the stomatogastric ganglion (StG) was a regular pyloric cycle (Figure 4). Repeated stimulation of the posterior stomach nerve (psn) of the posterior gastric mill proprioceptor (PSR) often induced series of spontaneous gastric cycles. We were therefore able to describe the normal gastric cycle as recorded in the output nerves from StG and to identify most of the relevant motor neurones by reference to the muscles that they innervate (Figure 10). The gastric cycle output was variable (Figures 5, 6), although in many preparations one complex type of output predominated (Figure 7). The basic feature of the gastric cycle was an alternation of activity between the single cardio‐pyloric neurone (CP) and a complex variable burst in the lateral cardiac (LC), the gastro‐pyloric (GP), the gastric (GM), and other associated neurones. During this normally occurring complex gastric burst significant changes occurred in the pyloric cycle, notably an increase in activity of the pacemaker pyloric dilator (PD) group and an inhibition of the lateral pyloric (LP), inferior cardiac (IC) and ventricular dilator (VD) neurones (Figures 6, 7, 8, 9). These changes are probably associated with an opening of the cardio‐pyloric valve and food passage into the pyloric filter. The gastric output was related to the normally observed movements of the dorsal ossicles of the gastric mill and thus to the operation of the teeth of the mill (Figure 11). Increased input from the PSR is associated with the grinding action of the teeth which is caused by the complex gastric burst (Figure 12).

Stimulation of the psn during an ongoing regular pyloric output caused changes in the cycle which mimicked those occurring during the spontaneous gastric cycle (Figure 13; Table 1). Stimulation of the psn during ongoing gastric activity also affected the gastric units (Figure 14). The input pathway from the PSR is shown to be through the stomatogastric nerve (sgn), the connection between the commissural ganglia and the stomatogastric ganglion (Figure 15). The commissural ganglia are known to receive most of the sensory input from the foregut and PSR input is probably processed there. Recordings from the sgn show that psn stimulation activates a small number of centrally originating units, and that the activity of these units coincides with the pyloric output changes (Figures 15, 16). We therefore label the units command interneurones. Their effects could be mediated by direct connections to only the PD pacemaker neurones of the pyloric cycle. Control experiments showed that PSR input is not necessary for the pyloric output changes to occur during gastric output but that similar output changes can be evoked by input resulting from induced gastric movements (Figure 15(E)). We think that the pyloric cycle output changes are normally controlled by a number of mechanisms at different levels (Figure 17). We cannot easily explain the effects of PSR input on the gastric cycle neurones.

These findings are important because they allow us to study a specific input to the StG without disrupting its normal input‐output pathways to the central nervous system. Further experiments on the system designed to test the assumption that the sgn units are in fact responsible for the pyloric output changes, and to investigate the processing of the PSR input are outlined.  相似文献   

11.
1. Transmitters of motoneurons in the stomatogastric ganglion (STG) of Squilla were identified by analyzing the excitatory neuromuscular properties of muscles in the posterior cardiac plate (pcp) and pyloric regions. 2. Bath and iontophoretic applications of glutamate produce depolarizations in these muscles. The pharmacological experiments and desensitization of the junctional receptors elucidate the glutamatergic nature of the excitatory junctional potentials (EJPs) evoked in the constrictor and dilator muscles. The reversal potentials for the excitatory junctional current (EJC) and for the glutamate-induced current are almost the same. 3. Some types of dilator muscle show sensitivity to both glutamate and acetylcholine (ACh) exogenously applied. The pharmacological evidence and desensitization of the junctional receptors indicate the glutamatergic nature of neuromuscular junctions in these dually sensitive muscles. The reversal potentials for the EJC and for the ACh-induced current are not identical. 4. Glutamate is a candidate as an excitatory neuro-transmitter at the neuromuscular junctions which the STG motoneurons named PCP, PY, PD, LA and VC make with the identified muscles. Kainic and quisqualic acids which act on glutamate receptors are potent excitants of these muscles. Extrajunctional receptors to ACh are present in two types of the muscle innervated by LA and VC. 5. Neurotransmitters used by the STG motoneurons of stomatopods are compared to those of decapods.  相似文献   

12.
Ths structure of the stomatogastric neuromuscular system in Panulirus argus, Callinectes sapidus and Homarus americanus has recently been described (Maynard and Dando, 1973). We attempt here to describe the sensory innervation of the foregut in Panulirus argus and, by combining this information with previous published data and less systematic observations on Callinectes and Homarus, to provide in addition a summary of the stomatogastric sensory systems in these types of Decapoda Crustacea (Figure 1, Table I).

Some anatomical problems remain unresolved and there is variation in the structure of the sense organs in different species, but we are able to recognize six major receptor groups in all of the species examined. These are (i) mechanoreceptors which monitor movements of the lower oesophagus and mouth (Receptor reference Nos. 1, 2, 3); (ii) probable chemoreceptors in the higher oesophagus and ventral cardiac sac (Rf. Nos. 6, 9, 11); (iii) cells located in or near the stomatogastric ganglion which monitor movements of the gastric mill (Rf. No. 8); (iv) neurones of the posterior stomach nerve (Rf. No. 15) which monitor movements of the gastric mill; (v) neurones innervating muscles near the cardio‐pyloric valve (Rf. No. 16); (vi) neurones innervating the hepatopancreas duct and the initial part of the intestine (Rf. Nos. 18, 19).

In such a restricted system it should be possible to determine the precise role that the various sensory systems play in the control of the simple movements of the foregut. This research must necessarily involve the investigation, with intracellular techniques, of the central events in the commissural ganglia as these ganglia appear to be the major co‐ordination centres of the stomatogastric nervous system.  相似文献   

13.
Cellular properties and modulation of the identified neurons of the posterior cardiac plate-pyloric system in the stomatogastric ganglion of a stomatopod, Squilla oratoria, were studied electrophysiologically. Each class of neurons involved in the cyclic bursting activity was able to trigger an endogenous, slow depolarizing potential (termed a driver potential) which sustained bursting. Endogenous oscillatory properties were demonstrated by the phase reset behavior in response to brief stimuli during ongoing rhythm. The driver potential was produced by membrane voltage-dependent activation and terminated by an active repolarization. Striking enhancement of bursting properties of all the cell types was induced by synaptic activation via extrinsic nerves, seen as increases in amplitude or duration of driver potentials, spiking rate during a burst, and bursting rate. The motor pattern produced under the influence of extrinsic modulatory inputs continued for a long time, relative to that in the absence of activation of modulatory inputs. Voltage-dependent conductance mechanisms underlying postinhibitory rebound and driver potential responses were modified by inputs. It is concluded that endogenous cellular properties, as well as synaptic circuitry and extrinsic inputs, contribute to generation of the rhythmic motor pattern, and that a motor system and its component neurons have been highly conserved during evolution between stomatopods and decapods.Abbreviations AB anterior burster neuron - CoG commissural ganglion - CPG central pattern generator - lvn lateral ventricular nerve - OG oesophageal ganglion - pcp posterior cardiac plate - PCP pcp constrictor neuron - PD pyloric dilator neuron - PY pyloric constrictor neuron - son superior oesophageal nerve - STG stomatogastric ganglion - stn stomatogastric nerve  相似文献   

14.
The neurotransmitters mediating the synaptic interactions in the pyloric system of the stomatogastric ganglion of a stomatopod, Squilla oratoria, were examined. Putative transmitters were applied iontophoretically to the pyloric cells. Glutamate and GABA produced inhibitory responses in all motoneurons but acetylcholine did not. These inhibitory responses were due to increases in conductance to either K+ or Cl or both, and blocked by picrotoxin. The inhibitory postsynaptic potentials evoked by the constrictor and dilator neurons were different in their time courses, reversal potentials, ion selectivities, and picrotoxin sensitivities. Glutamate is a transmitter candidate for inhibitory synapses made among the pyloric cells as well as for their neuromuscular junctions. In some cells, glutamate and acetylcholine evoked excitatory responses which were blocked by joro spider toxin and by tubocurare, respectively. They mediated the extrinsic inputs to modulate the pyloric rhythm. The transmitter, glutamate, is conserved in the ganglion neurons between stomatopods and decapods during evolution. Use of two transmitters, glutamate and acetylcholine, may have evolved in decapods, while the ionic mechanism is preserved in both orders. The neuromodulators, acetylcholine and -aminobutyric acid, are conserved between both orders. Glutamate may be used as the neuromodulator in stomatopods.Abbreviations ACh acetylcholine - EPSP excitatory postsynaptic potential - GABA -aminobutyric acid - Glu glutamate - IC inferior cardiac - IPSP inhibitory postsynaptic potential - JSTX joro spider toxin - LP lateral pyloric - pcp posterior cardiac plate - PTX picrotoxin  相似文献   

15.
The regulation of intracellular neuronal pH and pH from the extracellular space was studied in the isolated stomatogastric ganglion of the crab Cancer pagurus. Intracellular neuronal pH was found to be 0.3–0.4 pH units more acidic than the standard bath pH of 7.4 and surprisingly, the extracellular space pH was found to be around 0.1 pH units more alkaline than the bath pH. Extracellular space pH shifts in response to bath pH changes decreased as a function of the depth of the recording site within the ganglion, suggesting the existence of restrictions in the free diffusion of H+. The amplitude of these pHe shifts increased in Na+-free saline or with amiloride, suggesting Na+-dependent regulation of the extracellular space pH. In Na+ free saline or in the presence of amiloride, intracellular pH recovery from an NH4Cl induced acidosis was reduced, and the H+ muffling capacity (cf. Thomas et al. 1991) of the extracellular space was markedly reduced. Changes of bath pH had only small effects on the rhythm generating properties of one of the central pattern generators of the stomatogastric ganglion, while NH4Cl-induced intraganglionic pH changes markedly altered this rhythm.Abbreviations CPG central pattern generator - ECS extracellular space - LP lateral pyloric neuron - NMDG N-methyl-D-glucamine - PD pyloric dilator neuron - pHe extracellular space pH - pHi intracellular pH - pHo bath pH - STG stomatogastric ganglion - Vref reference potential  相似文献   

16.
Pyloric pattern-generating neurons that control the pyloric region of the foregut were identified in the stomatogastric ganglion of the most primitive decapod genus Penaeus. Five types of motor neurons and one interneuron are involved in generation of pyloric motor pattern. One cell type of motor neurons innervates muscles of both the gastric mill and the pylorus like the gastric motor neurons in Cancer, but unlike those in Panulirus. These identified neurons are connected to each other either by electrical or inhibitory chemical synapses to construct the neural circuit. This pyloric circuit is similar to the homologous circuit of other crustacean species though some differences are seen in synaptic connections, supporting the hypothesis that the basic design of the neural circuit has been conserved during evolution of the Malacostraca, and that differences have occurred in the synaptic connectivity as the foregut structure has become complex. The motor neurons use either acetylcholine or glutamate as a neurotransmitter like in reptantians. The foregut structure, the number of the pyloric cells, muscle innervation, neurotransmitters, and circuitry are compared among malacostracan crustaceans to provide insight into how the neural circuits change and evolve to produce the motor patterns mediating behaviour. Accepted: 18 April 1997  相似文献   

17.
The crustacean stomatogastric ganglion (STG) is modulated by both locally released neuroactive compounds and circulating hormones. This study presents mass spectrometric characterization of the complement of peptide hormones present in one of the major neurosecretory structures, the pericardial organs (POs), and the detection of neurohormones released from the POs. Direct peptide profiling of Cancer borealis PO tissues using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) revealed many previously identified peptides, including proctolin, red pigment concentrating hormone (RPCH), crustacean cardioactive peptide (CCAP), several orcokinins, and SDRNFLRFamide. This technique also detected corazonin, a well-known insect hormone, in the POs for the first time. However, most mass spectral peaks did not correspond to previously known peptides. To characterize and identify these novel peptides, we performed MALDI postsource decay (PSD) and electrospray ionization (ESI) MS/MS de novo sequencing of peptides fractionated from PO extracts. We characterized a truncated form of previously identified TNRNFLRFamide, NRNFLRFamide. In addition, we sequenced five other novel peptides sharing a common C-terminus of RYamide from the PO tissue extracts. High K+ depolarization of isolated POs released many peptides present in this tissue, including several of the novel peptides sequenced in the current study.  相似文献   

18.
Inserting on the buccal and esophageal foregut of Gammarus minus are numerous pairs of serially arranged dorsal dilator muscles, a single pair of lateral muscles, and two pairs of posterior muscles. Muscles of the cardiac stomach include three dorsal sets, a single pair associated with the pterocardiac ossicles, and two pairs inserting on the ventral aspect. A single pair of muscles inserts on the lateral aspect of the pyloric stomach. The extrinsic muscles of the foregut originate from exoskeletal apodemes of the cephalothoracic cuticle, sockets of the mandible, and a maxillary bridge that lies just ventral to the cardiac stomach. The extrinsic musculature of the hindgut is restricted to the rectal region and consists of paired dorsal and ventral series in an X-configuration. A single unpaired muscle inserts on the ventral midline. Extrinsic muscles of the hindgut originate from the integument of the last pleonic segment. The general arrangement of extrinsic gut muscles in G. minus is similar but not identical to that of other amphipods studied. However, the pattern is quite different from that of other malacostracans.  相似文献   

19.
1.  Muscles of the posterior cardiac plate (pcp) and pyloric regions in the stomach of Squilla are innervated by motoneurons located in the stomatogastric ganglion (STG). The pattern of innervation of various muscles in these regions was determined using electrophysiological methods.
2.  The dilator muscles are singly or doubly innervated by the pyloric dilator neurons (PDs). The constrictor muscles are singly or doubly innervated by the pcp neuron (PCP) or the pyloric neurons (PYs). These muscles are sequentially activated by pcp-pyloric motor outputs produced by the PCP, PY, and PD. All muscles can generate an all-or-nothing spike.
3.  The constrictor muscles generate spikes followed by depolarizing afterpotentials which lead to a sustained depolarization with repetitive spikes. The PYs can entrain rhythmic spike discharges of these muscles.
4.  The spike of muscles remains unchanged by bath application of tetrodotoxin (10-7 M) to suppress neuronal impulse activities, but it is blocked by Mn2+ (10 mM).
5.  The constrictor muscle isolated from the STG displays an endogenous property of spontaneous membrane oscillation that produces a train of spikes. Brief depolarizing or hyperpolarizing stimuli can trigger or terminate an oscillatory potential, respectively, and reset the subsequent rhythm.
6.  The possible functions of myogenicity under the control of discharges of motoneurons in the pyloric constrictor neuromuscular system are discussed.
  相似文献   

20.
Summary The morphology and fine structure of the vibratile anterior dorsal fin of the rockling Gaidropsarus mediterraneus are described. 60–80 fin rays project as a fringe from a reduced fin web; their lateral movement maintains the fin in almost constant rapid undulation, at a frequency of 3–4 beats per second. The fin can be laid back and with-drawn into a groove. Erector and depressor muscles, which are histologically distinct, move each ray. The fin support is modified, incorporating elastic cartilage, and enclosed in a capsule of collagenous connective tissue. The epidermis at the frontal and caudal aspect of each ray contains numerous receptor cells, over 100,000 per mm2, which have an apical microvillus and synaptic connections with nerve fibres. The recurrent facial nerve sends a major branch to the dorsal fins, which is joined by dorsal ramuli of spinal nerves. It is calculated that there are three to six million receptor cells on the vibratile fin and in the epidermis of the dorsal groove, in individuals of average size. Taste buds do not occur in the skin of the groove, contrary to a previous report, nor on the vibratile fin rays, although they are present on the prominent most anterior fin ray and elsewhere on the fins and barbels. The undulatory motion of the fin draws sea water towards and through the vibratile rays and backwards as a perceptible current. The fin constitutes a specific sensory organ, a water sampler, peculiar to this rockling and related species.Abbrevations used in figures a aperture - am axial muscles - bl base of lepidotrichion - cc collagenous capsule - dlc dorsal longitudinal canal - dr distal radial - drs dorsal ramulus of a spinal nerve - e epidermal cell(s) - ec elastic cartilage - en extracapsular branch of the recurrent facial nerve - fm fin membrane - fr fin ray - frn fin ray nerve - in intracapsular branches of the recurrent facial nerve - l lepidotrichia - n nerve plexus - ns neural spine - pr proximal radial - rc receptor cell(s) - rdm radial depressor muscle - rem radial erector muscle - s scales - t tendons Dedicated to Professor Konrad Lorenz on the occasion of his 80th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号