首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human Kv1.5 potassium channel forms the IKur current in atrial myocytes and is functionally altered by coexpression with Kvbeta subunits. To explore the role of protein kinase A (PKA) phosphorylation in beta-subunit function, we examined the effect of PKA stimulation on Kv1.5 current following coexpression with either Kvbeta1.2 or Kvbeta1.3, both of which coassemble with Kv1.5 and induce fast inactivation. In Xenopus oocytes expressing Kv1.5 and Kvbeta1.3, activation of PKA reduced macroscopic inactivation with an increase in K+ current. Similar results were obtained using HEK 293 cells which lack endogenous K+ channel subunits. These effects did not occur when Kv1.5 was coexpressed with either Kvbeta1.2 or Kvbeta1.3 lacking the amino terminus, suggesting involvement of this region of Kvbeta1.3. Removal of a consensus PKA phosphorylation site on the Kvbeta1.3 NH2 terminus (serine 24), but not alternative sites in either Kvbeta1.3 or Kv1.5, resulted in loss of the functional effects of kinase activation. The effects of phosphorylation appeared to be electrostatic, as replacement of serine 24 with a negatively charged amino acid reduced beta-mediated inactivation, while substitution with a positively charged residue enhanced it. These results indicate that Kvbeta1.3-induced inactivation is reduced by PKA activation, and that phosphorylation of serine 24 in the subunit NH2 terminus is responsible.  相似文献   

2.
T lymphocytes are exposed to hypoxia during their development and also when they migrate to hypoxic pathological sites such as tumors and wounds. Although hypoxia can affect T cell development and function, the mechanisms by which immune cells sense and respond to changes in O(2)-availability are poorly understood. K(+) channels encoded by the Kv1.3 subtype of the voltage-dependent Kv1 gene family are highly expressed in lymphocytes and are involved in the control of membrane potential and cell function. In this study, we investigate the sensitivity of Kv1.3 channels to hypoxia in freshly isolated human T lymphocytes and leukemic Jurkat T cells. Acute exposure to hypoxia (20 mmHg, 2 min) inhibits Kv1.3 currents in both cell types by 20%. Prolonged exposure to hypoxia (1% O(2) for 24 h) selectively decreases Kv1.3 protein levels in Jurkat T cells by 47%, but not Kvbeta2 and SK2 Ca-activated K(+) channel subunit levels. The decrease in Kv1.3 protein levels occurs with no change in Kv1.3 mRNA expression and is associated with a significant decrease in K(+) current density. A decrease in Kv1.3 polypeptide levels similar to that obtained during hypoxia is produced by Kv1.3 channel blockage. Our results indicate that hypoxia produces acute and long-term inhibition of Kv1.3 channels in T lymphocytes. This effect could account for the inhibition of lymphocyte proliferation during hypoxia. Indeed, we herein present evidence showing that hypoxia selectively inhibits TCR-mediated proliferation and that this inhibition is associated with a decrease in Kv1.3 proteins.  相似文献   

3.
Voltage-gated K+ (KV) channels are protein complexes composed of ion-conducting integral membrane alpha subunits and cytoplasmic modulatory beta subunits. The differential expression and association of alpha and beta subunits seems to contribute significantly to the complexity and heterogeneity of KV channels in excitable cells, and their functional expression in heterologous systems provides a tool to study their regulation at a molecular level. Here, we have studied the effects of Kvbeta1.2 coexpression on the properties of Shaker and Kv4.2 KV channel alpha subunits, which encode rapidly inactivating A-type K+ currents, in transfected HEK293 cells. We found that Kvbeta1.2 functionally associates with these two alpha subunits, as well as with the endogenous KV channels of HEK293 cells, to modulate different properties of the heteromultimers. Kvbeta1.2 accelerates the rate of inactivation of the Shaker currents, as previously described, increases significantly the amplitude of the endogenous currents, and confers sensitivity to redox modulation and hypoxia to Kv4.2 channels. Upon association with Kvbeta1.2, Kv4.2 can be modified by DTT (1,4 dithiothreitol) and DTDP (2,2'-dithiodipyridine), which also modulate the low pO2 response of the Kv4.2+beta channels. However, the physiological reducing agent GSH (reduced glutathione) did not mimic the effects of DTT. Finally, hypoxic inhibition of Kv4.2+beta currents can be reverted by 70% in the presence of carbon monoxide and remains in cell-free patches, suggesting the presence of a hemoproteic O2 sensor in HEK293 cells and a membrane-delimited mechanism at the origin of hypoxic responses. We conclude that beta subunits can modulate different properties upon association with different KV channel subfamilies; of potential relevance to understanding the molecular basis of low pO2 sensitivity in native tissues is the here described acquisition of the ability of Kv4. 2+beta channels to respond to hypoxia.  相似文献   

4.
Kvbeta2 binds to K(+) channel alpha subunits from at least two different families (Kv1 and Kv4) and is a member of the aldo-ketoreductase (AKR) superfamily. Proposed functions for this protein in vivo include a chaperone-like role in Kv1 alpha subunit biogenesis and catalytic activity as an AKR oxidoreductase. To investigate the in vivo function of Kvbeta2, Kvbeta2-null and point mutant (Y90F) mice were generated through gene targeting in embryonic stem cells. In Kvbeta2-null mice, Kv1.1 and Kv1.2 localize normally in cerebellar basket cell terminals and the juxtaparanodal region of myelinated nerves. Moreover, normal glycosylation patterns are observed for Kv1.1 and Kv1.2 in whole brain lysates. Thus, loss of the chaperone-like activity does not appear to account for the phenotype of Kvbeta2-null mice, which include reduced life spans, occasional seizures, and cold swim-induced tremors similar to that observed in Kv1.1-null mice. Mice expressing Kvbeta2, mutated at a site (Y90F) that abolishes AKR-like catalytic activity in other family members, have no overt phenotype. We conclude that Kvbeta2 contributes to regulation of excitability in vivo, although not directly through either chaperone-like or typical AKR catalytic activity. Rather, Kvbeta2 relies upon as yet unidentified mechanisms in the regulation of K(+) channel and/or oxidoreductive functions.  相似文献   

5.
The Kv1.5 K(+) channel is functionally altered by coassembly with the Kvbeta1.3 subunit, which induces fast inactivation and a hyperpolarizing shift in the activation curve. Here we examine kinase regulation of Kv1.5/Kvbeta1.3 interaction after coexpression in human embryonic kidney 293 cells. The protein kinase C inhibitor calphostin C (3 microM) removed the fast inactivation (66 +/- 1.9 versus 11 +/- 0.25%, steady state/peak current) and the beta-induced hyperpolarizing voltage shift in the activation midpoint (V(1/2)) (-21.9 +/- 1.4 versus -4.3 +/- 2.0 mV). Calphostin C had no effect on Kv1.5 alone with respect to inactivation kinetics and V(1/2). Okadaic acid, but not the inactive derivative, blunted both calphostin C effects (V(1/2) = -17.6 +/- 2.2 mV, 38 +/- 1.8% inactivation), consistent with dephosphorylation being required for calphostin C action. Calphostin C also removed the fast inactivation (57 +/- 2.6 versus 16 +/- 0.6%) and the shift in V(1/2) (-22.1 +/- 1.4 versus -2.1 +/- 2.0 mV) conferred onto Kv1.5 by the Kvbeta1.2 subunit, which shares only C terminus sequence identity with Kvbeta1. 3. In contrast, modulation of Kv1.5 by the Kvbeta2.1 subunit was unaffected by calphostin C. These data suggest that Kvbeta1.2 and Kvbeta1.3 subunit modification of Kv1.5 inactivation and voltage sensitivity require phosphorylation by protein kinase C or a related kinase.  相似文献   

6.
Inactivation of voltage-gated Kv1 channels can be altered by Kvbeta subunits, which block the ion-conducting pore to induce a rapid ('N-type') inactivation. Here, we investigate the mechanisms and structural basis of Kvbeta1.3 interaction with the pore domain of Kv1.5 channels. Inactivation induced by Kvbeta1.3 was antagonized by intracellular PIP(2). Mutations of R5 or T6 in Kvbeta1.3 enhanced Kv1.5 inactivation and markedly reduced the effects of PIP(2). R5C or T6C Kvbeta1.3 also exhibited diminished binding of PIP(2) compared with wild-type channels in an in vitro lipid-binding assay. Further, scanning mutagenesis of the N terminus of Kvbeta1.3 revealed that mutations of L2 and A3 eliminated N-type inactivation. Double-mutant cycle analysis indicates that R5 interacts with A501 and T480 of Kv1.5, residues located deep within the pore of the channel. These interactions indicate that Kvbeta1.3, in contrast to Kvbeta1.1, assumes a hairpin structure to inactivate Kv1 channels. Taken together, our findings indicate that inactivation of Kv1.5 is mediated by an equilibrium binding of the N terminus of Kvbeta1.3 between phosphoinositides (PIPs) and the inner pore region of the channel.  相似文献   

7.
Activity of voltage-gated K+ (Kv) channels controls membrane potential (E(m)). Membrane depolarization due to blockade of K+ channels in mesenteric artery smooth muscle cells (MASMC) should increase cytoplasmic free Ca2+ concentration ([Ca2+]cyt) and cause vasoconstriction, which may subsequently reduce the mesenteric blood flow and inhibit the transportation of absorbed nutrients to the liver and adipose tissue. In this study, we characterized and compared the electrophysiological properties and molecular identities of Kv channels and examined the role of Kv channel function in regulating E(m) in MASMC and intestinal epithelial cells (IEC). MASMC and IEC functionally expressed multiple Kv channel alpha- and beta-subunits (Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5, Kv2.1, Kv4.3, and Kv9.3, as well as Kvbeta1.1, Kvbeta2.1, and Kvbeta3), but only MASMC expressed voltage-dependent Ca2+ channels. The current density and the activation and inactivation kinetics of whole cell Kv currents were similar in MASMC and IEC. Extracellular application of 4-aminopyridine (4-AP), a Kv-channel blocker, reduced whole cell Kv currents and caused E(m) depolarization in both MASMC and IEC. The 4-AP-induced E(m) depolarization increased [Ca2+]cyt in MASMC and caused mesenteric vasoconstriction. Furthermore, ingestion of 4-AP significantly reduced the weight gain in rats. These results suggest that MASMC and IEC express multiple Kv channel alpha- and beta-subunits. The function of these Kv channels plays an important role in controlling E(m). The membrane depolarization-mediated increase in [Ca2+]cyt in MASMC and mesenteric vasoconstriction may inhibit transportation of absorbed nutrients via mesenteric circulation and limit weight gain.  相似文献   

8.
Auxiliary Kvbeta subunits form complexes with Kv1 family voltage-gated K(+) channels by binding to a part of the N terminus of channel polypeptide. This association influences expression and gating of these channels. Here we show that Kv4.3 proteins are associated with Kvbeta2 subunits in the brain. Expression of Kvbeta1 or Kvbeta2 subunits does not affect Kv4.3 channel gating but increases current density and protein expression. The increase in Kv4.3 protein is larger at longer times after transfection, suggesting that Kvbeta-associated channel proteins are more stable than those without the auxiliary subunits. This association between Kv4.3 and Kvbeta subunits requires the C terminus but not the N terminus of the channel polypeptide. Thus, Kvbeta subunits utilize diverse molecular interactions to stimulate the expression of Kv channels from different families.  相似文献   

9.
The homology models of the tetramerization (T1) domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were constructed based on the crystal structure of the Shaker T1 domain. The results of amino acid sequence alignment indicate that the T1 domains of these K+ channels are highly conserved, with the similarities varying from 77% between Shaker and Kv1.6 to 93% between Kv1.2 and Kv1.3. The homology models reveal that the T1 domains of these Kv channels exhibit similar folds as those of Shaker K+ channel. These models also show that each T1 monomer consists of three distinct layers, with N-terminal layer 1 and C-terminal layer 3 facing the cytoplasm and the membrane, respectively. Layer 2 exhibits the highest structural conservation because it is located around the central hydrophobic core. For each Kv channel, four identical subunits assemble into the homotetramer architecture around a four-fold axis through the hydrogen bonds and salt bridges formed by 15 highly conserved polar residues. The narrowest opening of the pore is formed by the four conserved residues corresponding to R115 of the Shaker T1 domain. The homology models of these Kv T1 domains provide particularly attractive targets for further structure-based studies.  相似文献   

10.
Gu C  Zhou W  Puthenveedu MA  Xu M  Jan YN  Jan LY 《Neuron》2006,52(5):803-816
Axonal Kv1 channels regulate action potential propagation-an evolutionarily conserved function important for the control of motor behavior as evidenced from the linkage of human Kv1 channel mutations to myokymia/episodic ataxia type 1 (EA1) and the Shaker mutant phenotype in Drosophila. To search for the machinery that mediates axonal targeting of Kv1 channels composed of both alpha and beta subunits, we first demonstrate that Kvbeta2 is responsible for targeting Kv1 channels to the axon. Next, we show that Kvbeta2 axonal targeting depends on its ability to associate with the microtubule (MT) plus-end tracking protein (+TIP) EB1. Not only do Kvbeta2 and EB1 move in unison down the axon, Brefeldin A-sensitive Kv1-containing vesicles can also be found at microtubule ends near the cell membrane. In addition, we found that Kvbeta2 associates with KIF3/kinesin II as well. Indeed, Kv1 channels rely on both KIF3/kinesin II and EB1 for their axonal targeting.  相似文献   

11.
Genetic ablation of the voltage-gated potassium channel Kv1.3 improves insulin sensitivity and increases metabolic rate in mice. Inhibition of Kv1.3 in mouse adipose and skeletal muscle is reported to increase glucose uptake through increased GLUT4 translocation. Since Kv1.3 represents a novel target for the treatment of diabetes, the present study investigated whether Kv1.3 is functionally expressed in human adipose and skeletal muscle and whether specific pharmacological inhibition of the channel is capable of modulating insulin sensitivity in diabetic mouse models. Voltage-gated K(+) channel currents in human skeletal muscle cells (SkMC) were insensitive to block by the specific Kv1.3 blockers 5-(4-phenoxybutoxy)psoralen (PAP-1) and margatoxin (MgTX). Glucose uptake into SkMC and mouse 3T3-L1 adipocytes was also unaffected by treatment with PAP-1 or MgTX. Kv1.3 protein expression was not observed in human adipose or skeletal muscle from normal and type 2 diabetic donors. To investigate the effect of specific Kv1.3 inhibition on insulin sensitivity in vivo, PAP-1 was administered to hyperglycemic mice either acutely or for 5 days prior to an insulin tolerance test. No effect on insulin sensitivity was observed at free plasma PAP-1 concentrations that are specific for inhibition of Kv1.3. Insulin sensitivity was increased only when plasma concentrations of PAP-1 were sufficient to inhibit other Kv1 channels. Surprisingly, acute inhibition of Kv1.3 in the brain was found to decrease insulin sensitivity in ob/ob mice. Overall, these findings are not supportive of a role for Kv1.3 in the modulation of peripheral insulin sensitivity.  相似文献   

12.
13.
The effect of Kvbeta3 subunit co-expression on currents mediated by the Shaker-related channels Kv1.1 to Kv1.6 in Chinese hamster ovary (CHO) cells was studied with patch-clamp techniques. In the presence of Kvbeta3, differences in the voltage dependence of activation for Kv1.1, Kv1.3 and Kv1.6 were detected, but not for Kv1.2- and Kv1.4-mediated currents. Co-expression of Kvbeta3 did not cause a significant increase in current density for any of the tested channels. In contrast to previous studies in Xenopus oocyte expression system, Kvbeta3 confered a rapid inactivation to all except Kv1.3 channels. Also, Kv1.6 channels that possess an N-type inactivation prevention (NIP) domain for Kvbeta1.1, inactivated rapidly when co-expressed with Kvbeta3. Onset and recovery kinetics of channel inactivation distinctly differed for the various Kv1alpha/Kvbeta3 subunit combinations investigated in this study. The results indicate that the choice of expression system may critically determine Kvbeta3 inactivating activity. This suggests that the presence of an inactivating domain and a receptor in a channel pore, although necessary, may not be sufficient for an effective rapid N-type inactivation of Kv1 channels in heterologous expression systems.  相似文献   

14.
15.
16.
In different types of K+ channels the primary activation gate is thought to reside near the intracellular entrance to the ion conduction pore. In the Shaker Kv channel the gate is closed at negative membrane voltages, but can be opened with membrane depolarization. In a previous study of the S6 activation gate in Shaker (Hackos, D.H., T.H. Chang, and K.J. Swartz. 2002. J. Gen. Physiol. 119:521-532.), we found that mutation of Pro 475 to Asp results in a channel that displays a large macroscopic conductance at negative membrane voltages, with only small increases in conductance with membrane depolarization. In the present study we explore the mechanism underlying this constitutively conducting phenotype using both macroscopic and single-channel recordings, and probes that interact with the voltage sensors or the intracellular entrance to the ion conduction pore. Our results suggest that constitutive conduction results from a dramatic perturbation of the closed-open equilibrium, enabling opening of the activation gate without voltage-sensor activation. This mechanism is discussed in the context of allosteric models for activation of Kv channels and what is known about the structure of this critical region in K+ channels.  相似文献   

17.
Aberrant T cell responses during T cell activation and immunological synapse (IS) formation have been described in systemic lupus erythematosus (SLE). Kv1.3 potassium channels are expressed in T cells where they compartmentalize at the IS and play a key role in T cell activation by modulating Ca(2+) influx. Although Kv1.3 channels have such an important role in T cell function, their potential involvement in the etiology and progression of SLE remains unknown. This study compares the K channel phenotype and the dynamics of Kv1.3 compartmentalization in the IS of normal and SLE human T cells. IS formation was induced by 1-30 min exposure to either anti-CD3/CD28 Ab-coated beads or EBV-infected B cells. We found that although the level of Kv1.3 channel expression and their activity in SLE T cells is similar to normal resting T cells, the kinetics of Kv1.3 compartmentalization in the IS are markedly different. In healthy resting T cells, Kv1.3 channels are progressively recruited and maintained in the IS for at least 30 min from synapse formation. In contrast, SLE, but not rheumatoid arthritis, T cells show faster kinetics with maximum Kv1.3 recruitment at 1 min and movement out of the IS by 15 min after activation. These kinetics resemble preactivated healthy T cells, but the K channel phenotype of SLE T cells is identical to resting T cells, where Kv1.3 constitutes the dominant K conductance. The defective temporal and spatial Kv1.3 distribution that we observed may contribute to the abnormal functions of SLE T cells.  相似文献   

18.
We have constructed a series of deletion mutants of Kv1.3, a Shaker-like, voltage-gated K+ channel, and examined the ability of these truncated mutants to form channels and to specifically suppress full-length Kv1.3 currents. These constructs were expressed heterologously in both Xenopus oocytes and a mouse cytotoxic T cell line. Our results show that a truncated mutant Kv1.3 must contain both the amino terminus and the first transmembrane-spanning segment, S1, to suppress full-length Kv1.3 currents. Amino-terminal-truncated DNA sequences from one subfamily suppress K+ channel expression of members of only the same subfamily. The first 141 amino acids of the amino-terminal of Kv1.3 are not necessary for channel formation. Deletion of these amino acids yields a current identical to that of full-length Kv1.3, except that it cannot be suppressed by a truncated Kv1.3 containing the amino terminus and S1. To test the ability of truncated Kv1.3 to suppress endogenous K+ currents, we constructed a plasmid that contained both truncated Kv1.3 and a selection marker gene (mouse CD4). Although constitutively expressed K+ currents in Jurkat (a human T cell leukemia line) and GH3 (an anterior pituitary cell line) cells cannot be suppressed by this double-gene plasmid, stimulated (up-regulated) Shaker-like K+ currents in GH3 cells can be suppressed.  相似文献   

19.
KChAP and voltage-dependent K+ (Kv) beta-subunits are two different types of cytoplasmic proteins that interact with Kv channels. KChAP acts as a chaperone for Kv2.1 and Kv4.3 channels. It also binds to Kv1.x channels but, with the exception of Kv1.3, does not increase Kv1.x currents. Kvbeta-subunits are assembled with Kv1.x channels; they exhibit "chaperone-like" behavior and change gating properties. In addition, KChAP and Kvbeta-subunits interact with each other. Here we examine the consequences of this interaction on Kv currents in Xenopus oocytes injected with different combinations of cRNAs, including Kvbeta1.2, KChAP, and either Kv1.4, Kv1.5, Kv2.1, or Kv4.3. We found that KChAP attenuated the depression of Kv1.5 currents produced by Kvbeta1.2, and Kvbeta1.2 eliminated the increase of Kv2.1 and Kv4.3 currents produced by KChAP. Both KChAP and Kvbeta1.2 are expressed in cardiomyocytes, where Kv1.5 and Kv2.1 produce sustained outward currents and Kv4.3 and Kv1.4 generate transient outward currents. Because they interact, either KChAP or Kvbeta1.2 may alter both sustained and transient cardiac Kv currents. The interaction of these two different classes of modulatory proteins may constitute a novel mechanism for regulating cardiac K+ currents.  相似文献   

20.
Modulation of A-type voltage-gated K+ channels can produce plastic changes in neuronal signaling. It was shown that the delayed-rectifier Kv1.1 channel can be converted to A-type upon association with Kvbeta1.1 subunits; the conversion is only partial and is modulated by phosphorylation and microfilaments. Here we show that, in Xenopus oocytes, expression of Gbeta1gamma2 subunits concomitantly with the channel (composed of Kv1.1 and Kvbeta1.1 subunits), but not after the channel's expression in the plasma membrane, increases the extent of conversion to A-type. Conversely, scavenging endogenous Gbetagamma by co-expression of the C-terminal fragment of the beta-adrenergic receptor kinase reduces the extent of conversion to A-type. The effect of Gbetagamma co-expression is occluded by treatment with dihydrocytochalasin B, a microfilament-disrupting agent shown previously by us to enhance the extent of conversion to A-type, and by overexpression of Kvbeta1.1. Gbeta1gamma2 subunits interact directly with GST fusion fragments of Kv1.1 and Kvbeta1.1. Co-expression of Gbeta1gamma2 causes co-immunoprecipitation with Kv1.1 of more Kvbeta1.1 subunits. Thus, we suggest that Gbeta1gamma2 directly affects the interaction between Kv1.1 and Kvbeta1.1 during channel assembly which, in turn, disrupts the ability of the channel to interact with microfilaments, resulting in an increased extent of A-type conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号