首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent decades, the relationships between environmental conditions and community structures of stream macroinvertebrates have been investigated in many parts of the world. However, knowledge about assemblages of mayflies and other stream macroinvertebrates in Siberia (northern Asia) and Asia is limited. In fact, the patterns in mayfly species richness and assemblage structure in relation to environmental parameters have not been previously examined in western Siberia. The aim of the present study was to examine the relationship between Ephemeroptera community structure and physical parameters along a river altitude/longitude gradient in Siberia. The results showed that maximum species richness was at relatively low altitudes, high water temperatures, slow current velocities, medium stream widths, medium‐small substrate particle size, and the presence of macrophytes. The mayfly assemblage was separated using TWINSPAN classification into eight distinct groups, which differed significantly with respect to at least one measured environmental factor. Multivariate ordination (detrended correspondence analysis) revealed that mayfly assemblages are structured by a single dominant gradient of altitude‐related environmental variables; altitude and water temperature were the best predictors. Ordination further revealed that mayfly assemblages are structured by altitude‐related environmental factors at high elevations, whereas in the lowlands these factors are less important.  相似文献   

2.
Models were developed of relationships among water quality, geospatial and species-level diatom data for 465 samples collected from stream sites across south-eastern Australia. Transfer functions were derived from weighted averaging and artificial neural network approaches. Analysis of spatial variations in species assemblages was used to divide the sites into two groups according to site elevation. The strongest predictive models for the upland group associated diatom assemblages with conductivity, longitude, altitude, and to a lesser extent pH, NO x and TKN. The strongest predictors for the lowland group were longitude and conductivity, but artificial neural network models performed well for NO x and temperature. The importance of the geospatial variables suggests that there may be a capacity to develop diatom sub-regions within which robust models for other water quality variables important to management can be generated. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. Handling editor: R. Norriss  相似文献   

3.
1. The distributions of subfossil remains of chironomid larvae in 28 large, deep and stratified lakes in Europe were examined in surface sediments along a latitudinal transect ranging from northern Sweden to southern Italy. 2. Canonical correspondence analysis (CCA) showed that summer surface water and July air temperature, as well as total phosphorus (TP) concentrations, hypolimnetic oxygen availability and conductivity were statistically significant (P < 0.05) explanatory variables explaining between 11 and 14% of the variance in the chironomid data. 3. Owing to the spatial scale covered by our study, many environmental variables were covarying. Temperature, TP concentration and oxygen availability were positively or negatively correlated with the first axis of a detrended correspondence analysis (DCA) of chironomid assemblages, suggesting that climatic and trophic conditions influenced profundal chironomid assemblages either in a direct (food and oxygen) or in an indirect (temperature) way. Parameters related to local environmental conditions, lake morphology and bedrock geology, such as organic matter content of the sediment, maximum lake depth, Secchi depth and pH, were not significant in explaining the distribution of chironomid assemblages in our study lakes. 4. The strong relationship between chironomid assemblages and summer temperature may be related to the covariation of temperature with parameters, such as nutrient and oxygen availability, known to affect chironomid assemblages in deep, stratified lakes. However, summer temperature explained a statistically significant proportion of the variance in the chironomid assemblages even when effects of oxygen availability and TP concentrations were partialled out. This suggests that summer temperature has an effect on chironomid assemblages in deep lakes, which is not related to its covariation with trophic state. 5. The potential of fossil chironomid analysis for quantitatively reconstructing past nutrient conditions in deep, stratified lakes was examined by calculating the Benthic Quality Index (BQI) based on subfossil chironomids and by comparing BQI values with observed TP concentrations. BQI was linearly related to log‐transformed TP. Applying this relationship to fossil chironomid assemblages from Lake Päijänne (Finland) produced a TP reconstruction in agreement with measured TP during the period 1970–1990, demonstrating that this approach can provide quantitative estimates of past nutrient concentrations in deep, stratified lakes.  相似文献   

4.
We quantified stream temperature response to in‐stream habitat restoration designed to improve thermal suitability and resiliency of a high‐elevation Appalachian stream known to support a temperature‐limited brook trout population. Our specific objectives were to determine if: (1) construction of deep pools created channel unit‐scale thermal refugia and (2) reach scale stream channel reconfiguration reduced peak water temperatures along a longitudinal continuum known to be highly susceptible to summer‐time warming. Contrary to expectations, constructed pools did not significantly decrease channel unit‐scale summer water temperatures relative to paired control sites. This suggests that constructed pools did not successfully intercept a cool groundwater source. However, we did find a significant effect of stream channel restoration on reach‐scale thermal regimes. Both mean and maximum daily stream temperatures experienced significantly reduced warming trends in restored sections relative to control sections. Furthermore, we found that restoration efforts had the greatest effect on stream temperatures downstream of large tributaries. Restoration appears to have significantly altered thermal regimes within upper Shavers Fork, largely in response to changes in channel morphology that facilitated water movement below major cold‐water inputs. Decreased longitudinal warming will likely increase the thermal resiliency of the Shavers Fork main‐stem, sustaining the ability of these key large river habitats to continue supporting critical metapopulation processes (e.g. supplemental foraging and dispersal among tributary populations) in the face of climate change.  相似文献   

5.
Heteroptera species were collected from 48 sites distributed throughout the mainland and island complexes of Greece during 1999–2004. The aims of this study were to investigate Heteroptera distribution and abundance in Greek streams, identify the environmental factors that are linked to variation in their assemblages and to partition the influence of environmental and spatial components, alone and in combination, on Heteroptera community composition. Canonical ordination techniques (CCA) were used to determine the relationship between environmental variables and species abundance, while variation partitioning was performed using partial CCA to understand the importance of different explanatory variables in Heteroptera variation. Heteroptera variation was decomposed into independent and joint effects of local (physicochemical variables, microhabitat composition, stream width and depth), regional (land use/cover) and geographic variables (longitude, latitude, altitude and distance to source). Land use/cover, aquatic and riparian vegetation, stream size and water chemistry were the most important factors structuring Heteroptera assemblages. At regional scale, bug assemblages were mainly divided into those found in forested and agricultural landscapes, following water quality and microhabitat composition at local scale. Local variables accounted for 48% of the total explained variation, regional variables for 20% whereas geographical position appeared to be the least influencing factor (8.5%). The results of partial constraint analyses suggested that local variables play a major role in Heteroptera variation followed by regional variables. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

6.
Abstract Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a pre–post fire comparison of temperatures between two sites (one from a burned stream and one unburned) over 13 years, a short-term (3 year) pre–post fire comparison of a burned and unburned stream with spatially extensive data, and a short-term (1 year) comparative study of spatial variability in temperatures using a “space for time” substitutive design across 90 sites in nine streams (retrospective comparative study). The latter design included streams with a history of stand-replacing wildfire and streams with severe post-fire reorganization of channels due to debris flows and flooding. Results from these three studies indicated that summer maximum water temperatures can remain significantly elevated for at least a decade following wildfire, particularly in streams with severe channel reorganization. In the retrospective comparative study we investigated occurrence of native rainbow trout (Oncorhynchus mykiss) and tailed frog larvae (Ascaphus montanus) in relation to maximum stream temperatures during summer. Both occurred in nearly every site sampled, but tailed frog larvae were found in much warmer water than previously reported in the field (26.6°C maximum summer temperature). Our results show that physical stream habitats can remain altered (for example, increased temperature) for many years following wildfire, but that native aquatic vertebrates can be resilient. In a management context, this suggests wildfire may be less of a threat to native species than human influences that alter the capacity of stream-living vertebrates to persist in the face of natural disturbance. Electronic supplementary material: The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
We examined fossil chironomids (Diptera: Chironomidae) in the surface sediments of four maar lakes in western Alaska to determine chironomid distribution patterns with respect to within-lake gradients of water depth, LOI (loss-on-ignition), and bottom-water temperature. Linear and non-linear regressions were undertaken to test whether the within-lake distributions of fossil chironomids were uniform. Additionally, water depths where abrupt changes or breakpoints in the assemblages occur were identified using piecewise regression. Direct gradient analysis was then used to examine variation in the assemblages explained by the environmental data. For the shallowest lake, chironomid abundances of individual taxa and inferred temperatures varied little within the lake. For the three deep lakes, seven of the sixteen commonest fossil taxa varied significantly with water depth, although some lake-specific patterns were evident. Water depth was generally identified as the principal environmental variable in explaining variation in the assemblages, although sediment organic matter content and bottom-water temperature were also important. Abrupt changes in assemblages occurred at different water depths in each lake, and at only one lake did the breakpoint occur within the range of water depths defining the thermocline. Chironomid-inferred temperature trends from the lakes also showed depth-related patterns: the warmest inferred temperatures were generally from both the shallowest and deepest water depths, whereas intermediate depths yielded temperature inferences about 0.5 to 1.0°C cooler than the average within-lake value. Nevertheless, we conclude that these patterns had only a slight impact on temperature reconstructions relative to the prediction error of the model. A greater understanding of taphonomic processes is needed to determine their influence on environmental reconstructions based on chironomids. Handling editor: J. Saros  相似文献   

8.
1. We tested how strongly aquatic macroinvertebrate taxa richness and composition were associated with natural variation in both flow regime and stream temperatures across streams of the western United States. 2. We used long‐term flow records from 543 minimally impacted gauged streams to quantify 12 streamflow variables thought to be ecologically important. A principal component analysis reduced the dimensionality of the data from 12 variables to seven principal component (PC) factors that characterised statistically independent aspects of streamflow: (1) zero flow days, (2) flow magnitude, (3) predictability, (4) flood duration, (5) seasonality, (6) flashiness and (7) base flow. K‐means clustering was used to group streams into 4–8 hydrologically different classes based on these seven factors. 3. We also used empirical models to estimate mean annual, mean summer and mean winter stream temperatures at each stream site. We then used invertebrate data from 63 sites to develop Random Forest models to predict taxa richness and taxon‐specific probabilities of capture at a site from flow and temperature. We used the predicted taxon‐specific probabilities of capture to estimate how well predicted assemblages matched observed assemblages as measured by RIVPACS‐type observed/expected (O/E) indices and Bray–Curtis dissimilarities. 4. Macroinvertebrate taxon richness was only weakly associated with streamflow and temperature variables, implying that other factors more strongly influenced taxa richness. 5. In contrast to taxa richness, taxa composition was strongly associated with streamflow and temperature. Predictions of taxa composition (O/E and Bray–Curtis) were most precise when both temperature and streamflow PC factors were used, although predictions based on either streamflow PC factors or temperature alone were also better than null model predictions. Of the seven aspects of the streamflow regime we examined, variation in baseflow conditions appeared to be most directly associated with invertebrate biotic composition. We were also able to predict assemblage composition from the conditional probabilities of hydrological class membership nearly as well as Random Forests models that were based directly on continuous PC factors. 6. Our results have direct implication for understanding the relative importance of streamflow and temperature in regulating the structure and composition of stream assemblages and for improving the accuracy and precision of biological assessments.  相似文献   

9.
The spatial and temporal distributions of the epiphytic diatom flora on Thalassia testudinum was described within the Florida Bay estuary and at one Atlantic site east of the Florida Keys over a 1-year period. Species of the genus Mastogloia dominated the epiphytic diatom flora (82 out of 332 total species). Nonmetric Multidimensional Scaling (NMDS) and Analysis of Similarity (ANOSIM) revealed four distinct spatial assemblages and two temporal assemblages. Eastern and western Florida Bay assemblages were identified within the estuary. The eastern diatom assemblage was characterized by high relative abundances of Brachysira aponina and Nitzschia liebetruthii, while the western assemblage was characterized by the abundance of Reimerothrix floridensis, particularly during summer. Two diverse and distinct marine assemblages, one located in the Gulf of Mexico along the western edge of Florida Bay and the other behind the Florida reef tract in the Atlantic Ocean, were also identified. Analysis of the spatial distribution of diatoms and water quality characteristics within Florida Bay suggest that these assemblages may be structured by salinity and nutrient availability, particularly P. The Gulf of Mexico and the western Florida Bay assemblages were associated with higher water column salinities and TP concentrations and lower DIN concentrations and TN:TP ratios relative to the eastern Florida Bay assemblage. The temporal variation in diatom assemblages was associated with water temperature, though temporal indicator species were few relative to the number of spatial indicators. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

10.
1. Within a region with common climatic conditions, lake thermal variables should exhibit coherent variability patterns to the extent to which they are not influenced by lake specific features such as morphometry and water clarity. We tested the degree of temporal coherence in interannual variability for climatic variables (air temperature and solar radiation) among four lake districts in the Upper Great Lakes Region. We also tested the degree of coherence of lake thermal variables (near‐surface temperature, eplimnetic temperature, hypolimnetic temperature and thermocline depth) for lakes within these districts. 2. Our four lake districts included the Experimental Lakes Area in north‐western Ontario, the Dorset Research Centre area north of Toronto, Ontario, the Northern Highland Lake District in northern Wisconsin, and the Yahara Lakes near Madison in southern Wisconsin. Seventeen lakes were analyzed for lake thermal variables dependent on stratification. Another five lakes were added for the analysis of near‐surface temperature. 3. The analysis tested whether for monthly and summer means, the climate (air temperature and solar radiation) across the four lake districts was coherent interannually and whether variables which measure the thermal structure of the lakes were coherent interannually among lakes within each lake district and across the four lake districts. 4. Temporal coherence was estimated by the correlation between lake districts for meteorological variables and between lake pairs for lake thermal variables. Mean coherence and the percentage of correlations exceeding the 5% significance level were derived both within and between lake districts for lake thermal variables. 5. Across the four lake districts, summer mean air temperature was highly coherent while summer solar radiation was less coherent. Approximately 60–80% of the interannual variation in mean summer air temperature at a site occurred across the entire region. Less than 45% of the variation in solar radiation occurred across sites. 6. Epilimnetic temperature and the near‐surface temperature were highly coherent both within and between lake districts. The coherence of thermocline depth within and between lake districts was weaker. Hypolimnetic temperature was not coherent between lake districts for most lake pairs. It was coherent among lakes within some lake districts. 7. The influences of local weather and differences among lakes in water clarity are discussed in the context of differences in levels of coherence among lake thermal variables and among lake pairs for a given variable.  相似文献   

11.
Freshwater organisms are threatened by changes in stream flow and water temperature regimes due to global climate change and anthropogenic activities. Threats include the disappearance of narrow‐tolerance species and loss of favorable thermal conditions for cold‐adapted organisms. Mayflies are an abundant and diverse indicator of river health that performs important functional roles. The relative importance of key hydro‐environmental factors such as water temperature and flow volumes in structuring these communities has rarely been explored in the tropical regions of Africa. Here, we investigate the response of mayfly species diversity to these factors in the Luvuvhu catchment, a strategic water source area in the arid northeastern region of South Africa. Mayfly larvae were sampled monthly in stones‐in‐current biotopes across 23 sites over a one‐year period. The relationship between these environmental drivers and mayfly diversity was modeled using linear mixed effects models (LMMs) and a model‐based multivariate approach. Threshold Indicator Taxa Analysis (TITAN) was used to model the response of mayfly species to important gradients and identify thresholds of change. Site‐specific characteristic were the most important predictor of mayfly diversity, and there was considerable variation over time, with mayfly diversity peaking during winter. Along this, gradient temperature was the best predictor of assemblage structure, with five out of six reliable indicator species being cold‐adapted, and a community threshold response at 19°C. Results support laboratory‐based thresholds of temperature for mayfly species survival and development, extending empirical evidence to include field‐based observations. Increased global (climate change) and local (riparian vegetation removal, impoundments) changes are predicted to have negative impacts on mayfly diversity and ultimately on ecosystem function.  相似文献   

12.
Macroinvertebrate assemblages are structured by a number of abiotic and biotic factors interacting simultaneously. We investigated macroinvertebrate assemblages along gradients of human disturbance and morphometric characteristics in five lakes connected by the same stream. We aimed to assess the relative effects of environmental gradients on macroinvertebrate assemblages and to investigate whether water quality effects on the assemblages were correlated with buffer land use. There were significant differences in macroinvertebrate community compositions among lakes, and our results indicated that oligochaetes (mainly Limnodrilus) and insects (mainly Chironomus) contributed highly to the differences. We used redundancy analysis with variation partitioning to quantify the independent and combined anthropogenic effects of water quality and land use gradients on the macroinvertebrate community. The independent effect of water quality was responsible for 17% of the total variance in macroinvertebrate community composition, the independent effect of buffer land use accounted for 6% of variation, and the combined variation between land use change and water quality accounted for 12%. Our study indicated that both the independent effects of land use and within‐lake water quality can explain the influence in macroinvertebrate assemblages, with significant interactions between the two. This is rather important to notice that changes in buffer land use generally may alter nutrient inputs and thus severely affect abiotic conditions encountered by macroinvertebrate. Our study demonstrates that considering buffer zone effects explicitly may be significant in the selection and application of conservation and management strategies.  相似文献   

13.
Information on water mite assemblages from high elevation lentic biotopes is scant. A survey of 14 small Alpine lakes located between 1900 and 2400 m a.s.l. in Italy resulted in the discovery of 17 species of Hydrachnidia and a single species of freshwater Halacaridae. Arrenurus conicus and Lebertia tuberosa were the most widespread and abundant species; Lebertia sefvei, Lebertia rufipes, Oxus setosus, Panisus torrenticolus and Sperchon glandulosus were also widely distributed but relatively less abundant. Atractides fissus and Arrenurus conicus are recorded for the first time from Italy. In contrast to mid/low elevation lakes and ponds, water mite assemblages of alpine lakes are less diverse and are composed mainly of rheo- and crenobiontic taxa, most of which are cold-stenothermic. Typical standing water dwellers represented only a small fraction (23%) of the species sampled. A principal component analysis conducted on lake environmental variables resulted in a clear separation of the lakes mainly based on ionic contents, pH and temperature. Water mites seem to be less influenced by these factors than by temperature fluctuations and habitat stability and heterogeneity. We conclude with some considerations of the influence of abiotic and biotic factors on the altitudinal and latitudinal distribution pattern of water mites.  相似文献   

14.
The upper thermal limits of two cold-water stenotherms: the mayfly, Lestagella penicillata (Teloganodidae), and the stonefly, Aphanicerca capensis (Notonemouridae), were determined from six rivers in the Western Cape, South Africa. Limits were estimated using the Critical Thermal Method (expressed as Critical Thermal maximum) and the Incipient Lethal Temperature method (expressed as Incipient Lethal Upper Limit). Hourly water temperatures recorded in these rivers were used to characterise thermal signatures. Median CTmax and 96 h ILUT varied significantly amongst rivers for both species (≤5.7°C for CTmax and ≤4.0°C for 96 h ILUT) and variation was similar for both species. Differences in water temperature amongst rivers during the experimental period (spring) were insufficient (<2.0°C) to confirm the relationship between upper thermal limits and thermal history, expressed as an averaging statistic derived from in situ water temperatures. Greatest thermal range was over the warm summer period (>8.0°C) and it is likely that this is when thermal history may influence thermal limits. Maximum Weekly Allowable Temperature thresholds averaged for all rivers were lower for A. capensis (17.0°C) compared to L. penicillata (19.0°C). Both species have life cycles that allow them to avoid the thermally stressful summer period.  相似文献   

15.
16.
Using Diatom Assemblages to Assess Urban Stream Conditions   总被引:4,自引:0,他引:4  
We characterized changes in diatom assemblages along an urban-to-rural gradient to assess impacts of urbanization on stream conditions. Diatoms, water chemistry, and physical variables of riffles at 19 urban and 28 rural stream sites were sampled and assessed during the summer base flow period. Near stream land use was characterized using GIS. In addition, one urban and one rural site were sampled monthly throughout a year to assess temporal variation of diatom assemblages between the urban and rural stream sites. Canonical correspondence analysis (CCA) showed that the 1st ordination axis distinctly separated rural and urban sites. This axis was correlated with conductivity (r = 0.75) and % near-stream commercial/industrial land use (r = 0.55). TWINSPAN classified all sites into four groups based on diatom assemblages. These diatom-based site groups were significantly different in water chemistry (e.g., conductivity, dissolved nutrients), physical habitat (e.g., % stream substrate as fines), and near-stream land use. CCA on the temporal diatom data set showed that diatom assemblages had high seasonal variation along the 2nd axis in both urban and rural sites, however, rural and urban sites were well separated along the 1st ordination axis. Our results suggest that changes in diatom assemblages respond to urban impacts on stream conditions.  相似文献   

17.
Synopsis The influence of late spring and summer water temperatures on brook charr, Salvelinus fontinalis, growth and age structure was evaluated from 1984 to 1991 in the Ford River, Michigan. Temperature was monitored and brook charr sampled for vital statistics from late May through September using fyke nets and weirs at four locations within a 25.8 km section of stream. Scale analysis was used to determine captured brook charr age, past length at age and relative annual growth rates. Late spring and summer water temperature patterns varied between years with the greatest variability occurring in May and June. Age and size structure also varied between years and was significantly related to temperature. Years with cooler late spring and summer temperature patterns were dominated by older (age 2 and 3), larger brook charr, while years with warmer spring and summer temperature patterns were dominated by younger (age 1), smaller brook charr. Spring and summer temperature did not appear to have a significant effect on the growth of age 0 or age 1 brook charr. However, temperature was negatively related to brook charr growth from age 2 on. As spring and summer water temperatures are critical to brook charr growth and survival, it is important that a streams thermal regime be considered when establishing management goals for this species.  相似文献   

18.
Atte Korhola 《Ecography》1999,22(4):357-373
Multivariate statistical techniques were used to examine the relationships between surface-sediment cladoceran assemblages and 28 physical and chemical variables in 53 small subarctic lakes from northern Fennoscandia. The lakes were distributed along a steep eco-climatic gradient, spanning boreal corniferous forest to treeless tundra. In general, the sites were small, oligotrophic, and bathymetrically simple, with little or no disturbance in their catchments. From the initial 53 localities, only 36 contained a sufficient number of cladoceran remains for reasonable quantification. From these, a total of 29 cladoceran taxa representing 19 genera were identified, comprising predominantly littoral chydorid species. A constrained redundancy analysis (RDA) and associated Monte Carlo permutation tests indicated that maximum lake depth, sediment organic content, epilimnetic summer temperature, lake perimeter, and lake catchment area made statistically significant (p le; 0.05) contributions to explaining the variance in the cladoceran taxon data. These five variables together accounted for 67.7% of the explained variance, and made a unique contribution of 26.8% to the total variance: all physical determinants independently captured 33.2% of the total variance. The significance of the most powerful explanatory variables is discussed in the paper in detail, and autecological information regarding the most common cladoceran taxa is given. To assess the potential of cladoceran assemblages in environmental reconstruction, quantitative inference models for mean July water and air temperatures were developed for the cladoceran assemblage using partial least squares (PLS) regression. The final prediction model yielded a root mean squared error of prediction (RMSEP). as assessed by jackknifing, of 1.19°C for Cladocera-water temperature data-set, whereas the cladoceran assemblages showed only very weak relationships to mean July air temperature. The overall results emphasize the role of physical factors in regulating species abundance and distributions in these environmentally sensitive ecotonal lakes.  相似文献   

19.
An ecological calibration dataset for freshwater ostracods from 33 localities throughout West-Pomerania (Mecklenburg-Vorpommern, Germany) was evaluated using multivariate statistical methods. A total of 47 freshwater ostracod species were identified. Nine species were rediscovered after 100 years since the last published record and Candonopsis scourfieldi and Pseudocandona sucki was recorded for the first time in the study area. Special emphasis is put on the phenology of each species to gain information on the water characteristics at the time of their last moult. Canonical correspondence analysis (CCA) revealed that the ecological variables such as water temperature, Ca, Mg, and lake area were statistically most significant (p < 0.005; n = 72) in explaining variation in the distribution of ostracod assemblages. In addition, a transfer function was developed for paleolimnological approaches, based on a weighted-averaging (WA) model to calculate water temperature from the relative abundances of 22 selected ostracod species. This model was successfully applied to infer lake water temperature from subfossil ostracod assemblages collected from lacustrine deposits in northeast Germany (Lake Krakower See). Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号