首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Fisetin is a natural flavonoid from fruits and vegetables that exhibits antioxidant, neurotrophic, anti-inflammatory, and anti-cancer effects in various disease models. Up-regulation of heme oxygenase-1 (HO-1) expression protects against oxidative stress-induced cell death, and therefore, plays a crucial role in cytoprotection in a variety of pathological models. In the present study, we investigated the effect of fisetin on the up-regulation of HO-1 in human umbilical vein endothelial cells (HUVECs). Small interfering RNA and pharmacological inhibitors of PKC-δ and p38 MAPK attenuated HO-1 induction in fisetin-stimulated HUVECs. Fisetin treatment resulted in significantly increased NF-E2-related factor 2 (Nrf2) nuclear translocation, and antioxidant response element (ARE)-luciferase activity, leading to up-regulation of HO-1 expression. In addition, fisetin pretreatment reduced hydrogen peroxide (H(2)O(2))-induced cell death, and this effect was reversed by ZnPP, an inhibitor of HO-1. In summary, these findings suggest that induction of HO-1 expression via Nrf2 activation may contribute to the cytoprotection exerted by fisetin against H(2)O(2) -induced oxidative stress in HUVECs.  相似文献   

2.
Li H  Wang F  Zhang L  Cao Y  Liu W  Hao J  Liu Q  Duan H 《Cellular signalling》2011,23(10):1625-1632
Reactive oxygen species (ROS) play an important role in the pathogenesis of diabetic nephropathy. Nuclear factor erythroid 2-related factor 2 (Nrf2) can up-regulate the expression of antioxidant genes and protect cells from oxidative damage. The current study is aimed at examining the effect of modulation of Nrf2 expression on high glucose-induced oxidative stress and Nrf2-targeting antioxidant expression in mouse mesangial cells. In this study, mouse mesangial cells were transiently transfected with Nrf2-plasmid or the Nrf2-specific siRNA. The high glucose-induced intracellular ROS, malondialdehyde, cell proliferation, and TGF-β1 secretion were measured. The levels of Nrf2, heme oxygenase-1 (HO-1), γ-glutamylcysteine synthethase (γ-GCS) expression, and nuclear expression of Nrf2 in mouse mesangial cells were determined. We found that high glucose induced ROS and malondialdehyde generation in mouse mesangial cells. Induction of Nrf2 over-expression reduced the high glucose-induced ROS and malondialdehyde production, inhibited cell proliferation and TGF-β1 secretion, accompanied by up-regulating the expressions of HO-1 and γ-GCS in mouse mesangial cells. However, knockdown of Nrf2 expression displayed reverse effects in mouse mesangial cells. All these results indicated that Nrf2 and its downstream antioxidants, HO-1 and γ-GCS, are negative regulators of high glucose-induced ROS-related mouse mesangial cell dysfunction.  相似文献   

3.
4.
5.
6.
7.
Diabetic retinopathy is a leading cause of visual loss and blindness, characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for the development of diabetic retinopathy and is associated with increased oxidative/nitrosative stress in the retina. Since heme oxygenase-1 (HO-1) is an enzyme with antioxidant and protective properties, we investigated the potential protective role of HO-1 in retinal endothelial cells exposed to high glucose and oxidative/nitrosative stress conditions. Retinal endothelial cells were exposed to elevated glucose, nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). Cell viability and apoptosis were assessed by MTT assay, Hoechst staining, TUNEL assay and Annexin V labeling. The production of reactive oxygen species (ROS) was detected by the oxidation of 2',7'-dichlorodihydrofluorescein diacetate. The content of HO-1 was assessed by immunobloting and immunofluorescence. HO activity was determined by bilirubin production. Long-term exposure (7 days) of retinal endothelial cells to elevated glucose decreased cell viability and had no effect on HO-1 content. However, a short-time exposure (24 h) to elevated glucose did not alter cell viability, but increased both the levels of intracellular ROS and HO-1 content. Moreover, the inhibition of HO with SnPPIX unmasked the toxic effect of high glucose and revealed the protection conferred by HO-1. Oxidative/nitrosative stress conditions increased cell death and HO-1 protein levels. These effects of elevated glucose and HO inhibition on cell death were confirmed in primary endothelial cells (HUVECs). When cells were exposed to oxidative/nitrosative stress conditions there was also an increase in retinal endothelial cell death and HO-1 content. The inhibition of HO enhanced ROS production and the toxic effect induced by exposure to H(2)O(2) and NOC-18 (NO donor). Overexpression of HO-1 prevented the toxic effect induced by H(2)O(2) and NOC-18. In conclusion, HO-1 exerts a protective effect in retinal endothelial cells exposed to hyperglycemic and oxidative/nitrosative stress conditions.  相似文献   

8.
Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes mellitus and is considered as a leading cause of blindness. Oxidative stress and inflammation are significant drivers for the development of DR. Eriodictyol, a flavonoid compound, was proved to possess anti-inflammatory, antioxidative, and antidiabetic activities. However, the role of eriodictyol in DR has not been unveiled. In the current study, we explored the protective effects of eriodictyol on high glucose (HG)-induced rat retinal ganglial cells (RGCs). The results suggested that eriodictyol improved cell viability of HG-induced rat RGC-5 cells in a dose-dependent manner. Eriodictyol reduced the reactive oxygen species production and increased the activities of superoxide dismutase, glutathione peroxidase and catalase in rat RGC-5 cells in response to HG stimulation. The production of proinflammatory cytokines including tumor necrosis factor alpha and interleukin-8 was diminished after eriodictyol treatment. Eriodictyol also suppressed cell apoptosis induced HG in rat RGC-5 cells. Furthermore, eriodictyol enhanced the nuclear translocation of nuclear factor erythroid-2 (E2)-related factor 2 (Nrf2) and elevated the expression of antioxidant enzyme heme-oxygenase-1 (HO-1). These findings suggested that eriodictyol protects the RGC-5 cells from HG-induced oxidative stress, inflammation, and cell apoptosis through regulating the activation of Nrf2/HO-1 pathway.  相似文献   

9.
10.
Hepatic sinusoidal obstruction syndrome (HSOS) is a rare and life-threatening liver disease. (+)-Catechin is a natural dietary flavonol with high antioxidant capacity. This study aims to investigate the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant signalling pathway in the protection of (+)-catechin hydrate (CAT) against monocrotaline (MCT)-induced HSOS. Results of serum alanine/aspartate aminotransferases (ALT/AST) activities, total bilirubin (TBil) and bile acids (TBA) amounts, liver histological observation, scanning electron microscope evaluation, and hepatic metalloproteinase-9 (MMP-9) expression all demonstrated the protection of CAT against MCT-induced HSOS in rats. CAT attenuated MCT-induced liver oxidative injury in rats and the formation of cellular reactive oxygen species (ROS) in human hepatic sinusoidal endothelial cells (HHSECs). CAT-enhanced Nrf2 nuclear translocation in livers from MCT-treated rats and in HHSECs treated with MCT, and further increased the expression of Nrf2-dependent genes including catalytic or modify subunit of glutamate-cysteine ligase (GCLC/GCLM), haem oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). Moreover, GCL inhibitor L-buthionine-(S, R)-sulfoximine (BSO), NQO1 inhibitor diminutol (Dim), and HO-1 inhibitor zinc protoporphyrin (ZnPP) all abrogated CAT-provided the protection against MCT-induced cytotoxicity in HHSECs. The results of molecular docking analysis indicated the potential interaction of CAT with the Nrf2-binding site in kelch-like ECH-associated protein-1 (Keap1) protein. In summary, this study demonstrated the critical involvement of Nrf2 antioxidant signalling pathway in CAT-provided the protection against MCT-induced HSOS.  相似文献   

11.
To study the effects of curcumin on human retinal pigment epithelial (RPE) cells exposed to high glucose (HG) insult, we performed in vitro studies on RPE cells cultured both in normal and HG conditions to assess the effects of curcumin on the cell viability, nuclear factor erythroid 2-related factor 2 (Nrf2) expression, HO-1 activity, and ERK1/2 expression. RPE cells exposed to HG insult were treated with curcumin. The cell viability, apoptosis, HO-1 activity, ERK, and Nrf2 expression were evaluated. The data indicated that treatment with curcumin caused a significant decrease in terms of apoptosis. Further, curcumin was able to induce HO-1 expression via Nrf2 activation and counteracts the damage elicited by HG. The present study demonstrated that curcumin provides protection against HG-induced damage in RPE cells through the activation of Nrf2/HO-1 signaling that involves the ERK pathway, suggesting that curcumin may have therapeutic value in the treatment of diabetic retinopathy.  相似文献   

12.
13.
14.
15.
Heme oxygenase-1 (HO-1) represents a key defense mechanism against oxidative injury. Hyperglycemia has been linked to increased oxidative stress, leading to endothelial dysfunction, delayed cell replication, and enhanced apoptosis. The effect of streptozotocin (STZ)-induced diabetes on HO activity, HO-1 promoter activity, superoxide anion (O*-2, and the number of circulating endothelial cells was measured. The expression of HO-1/HO-2 protein was unchanged, but HO activity was decreased in aortas of diabetic rats compared with control (p < 0.05). High glucose decreased HO-1 promoter activity (p < 0.05). Hyperglycemia increased O*-2 and this increase was augmented with HO-1 inhibition and diminished with HO-1 upregulation (p < 0.05). Circulating endothelial cells were significantly higher in diabetic rats and were decreased or increased with administration of the HO-1 inducer (CoPP) or inhibitor (SnMP), respectively (p<0.05). In conclusion, HO-1 upregulation in diabetic rats brings about an increase in serum bilirubin, a reduction in O*-2 production, and a decrease in endothelial cell sloughing.  相似文献   

16.
17.
18.
19.
20.
Hyperglycemia-induced oxidative stress is implicated in the development of cardiomyopathy in diabetes that is associated with reduced adiponectin (APN) and heme oxygenase-1 (HO-1). Brahma-related gene 1 (Brg1) assists nuclear factor-erythroid-2-related factor-2 (Nrf2) to activate HO-1 to increase myocardial antioxidant capacity in response to oxidative stress. We hypothesized that reduced adiponectin (APN) impairs HO-1 induction which contributes to the development of diabetic cardiomyopathy, and that supplementation of APN may ameliorate diabetic cardiomyopathy by activating HO-1 through Nrf2 and Brg1 in diabetes. Control (C) and streptozotocin-induced diabetic (D) rats were untreated or treated with APN adenovirus (1×109 pfu) 3 weeks after diabetes induction and examined and terminated 1 week afterward. Rat left ventricular functions were assessed by a pressure–volume conductance system, before the rat hearts were removed to perform histological and biochemical assays. Four weeks after diabetes induction, D rats developed cardiac hypertrophy evidenced as increased ratio of heart weight to body weight, elevated myocardial collagen I content, and larger cardiomyocyte cross-sectional area (all P<0.05 vs C). Diabetes elevated cardiac oxidative stress (increased 15-F2t-isoprostane, 4-hydroxynonenal generation, 8-hydroxy-2′-deoxyguanosine, and superoxide anion generation), increased myocardial apoptosis, and impaired cardiac function (all P<0.05 vs C). In D rats, myocardial HO-1 mRNA and protein expression were reduced which was associated with reduced Brg1 and nuclear Nrf2 protein expression. All these changes were either attenuated or prevented by APN. In primarily cultured cardiomyocytes (CMs) isolated from D rats or in the embryonic rat cardiomyocytes cell line H9C2 cells incubated with high glucose (HG, 25 mM), supplementation of recombined globular APN (gAd, 2 μg/mL) reversed HG-induced reductions of HO-1, Brg1, and nuclear Nrf2 protein expression and attenuated cellular oxidative stress, myocyte size, and apoptotic cells. Inhibition of HO-1 by ZnPP (10 μM) or small interfering RNA (siRNA) canceled all the above gAd beneficial effects. Moreover, inhibition of Nrf2 (either by the Nrf2 inhibitor luteolin or siRNA) or Brg1 (by siRNA) canceled gAd-induced HO-1 induction and cellular protection in CMs and in H9C2 cells incubated with HG. In summary, our present study demonstrated that APN reduced cardiac oxidative stress, ameliorated cardiomyocyte hypertrophy, and prevented left ventricular dysfunction in diabetes by concomitantly activating Nrf2 and Brg1 to facilitate HO-1 induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号