首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxiredoxin 4 (PRDX4), a member of Peroxiredoxin (PRDX) family, is a typical 2-Cys PRDX. PRDX4 monitors the oxidative burden within cellular compartment and reduces hydrogen peroxide and alkyl hydroperoxide related to oxidative stress and apoptosis. Antioxidant, like PRDX4, may promote follicle development and participate in the pathophysiology of PCOS. In our previous study, we found that PRDX4 was expressed in mice oocyte cumulus oophorus complex, and that PRDX4 could be associated with follicle development. In this study, we explored the expression of PRDX4 in human follicles and possible role of PRDX4 in PCOS pathophysiology. Our data showed that PRDX4 was mainly expressed in granulosa cells in human ovaries. When compared to control group, both PRDX4 mRNA level and protein level decreased in PCOS group. The lowered levels of PRDX4 may relate to oxidative stress in the pathophysiologic progress of PCOS. Furthermore, expression of PRDX4 in the granulosa cells of in vivo or in vitro matured follicles was higher than that in immatured follicles, which suggested that PRDX4 may have a close relationship with follicular development. Altogether, our findings may provide new clues of the pathophysiologic mechanism of PCOS and potential therapeutic strategy using antioxidant, like PRDX4.  相似文献   

2.
Peroxiredoxin 1 (PRDX1) is a ubiquitously expressed antioxidant with vital roles in basal metabolic functions. In addition PRDX1 is involved in cell differentiation and proliferation, apoptosis and innate immunity. In this study, we have characterized PRDX1 from the tammar wallaby (Macropus eugenii). Tammar PRDX1 has high conservation of functional residues and motifs, and demonstrates a close homology with eutherian and vertebrate orthologues. Stimulation of adult tammar leukocytes with lipopolysaccharide and lipoteichoic acid suggests a role for PRDX1 in innate immune defences. PRDX1 expression in the organs of tammar pouch young was mildly elevated early in life possibly reflecting its role in basal metabolic processes. Later increases in PRDX1 expression correlated with functional maturation of several immune organs or with preparation for increased oxidative stress of emergence. The findings of the study are reflections of the complex integrated roles that PRDX1 has in regulation of oxidative stress, apoptosis, cell differentiation and proliferation, and innate immunity.  相似文献   

3.
4.
5.
6.
Endoplasmic reticulum (ER) oxidation 1 (ERO1) transfers disulfides to protein disulfide isomerase (PDI) and is essential for oxidative protein folding in simple eukaryotes such as yeast and worms. Surprisingly, ERO1-deficient mammalian cells exhibit only a modest delay in disulfide bond formation. To identify ERO1-independent pathways to disulfide bond formation, we purified PDI oxidants with a trapping mutant of PDI. Peroxiredoxin IV (PRDX4) stood out in this list, as the related cytosolic peroxiredoxins are known to form disulfides in the presence of hydroperoxides. Mouse embryo fibroblasts lacking ERO1 were intolerant of PRDX4 knockdown. Introduction of wild-type mammalian PRDX4 into the ER rescued the temperature-sensitive phenotype of an ero1 yeast mutation. In the presence of an H(2)O(2)-generating system, purified PRDX4 oxidized PDI and reconstituted oxidative folding of RNase A. These observations implicate ER-localized PRDX4 in a previously unanticipated, parallel, ERO1-independent pathway that couples hydroperoxide production to oxidative protein folding in mammalian cells.  相似文献   

7.
8.
The transfer of oxidizing equivalents from the endoplasmic reticulum (ER) oxidoreductin (Ero1) oxidase to protein disulfide isomerase is an important pathway leading to disulfide formation in nascent proteins within the ER. However, Ero1-deficient mouse cells still support oxidative protein folding, which led to the discovery that peroxiredoxin IV (PRDX4) catalyzes a parallel oxidation pathway. To identify additional pathways, we used RNA interference in human hepatoma cells and evaluated the relative contributions to oxidative protein folding and ER redox homeostasis of Ero1, PRDX4, and the candidate oxidants quiescin-sulfhydryl oxidase 1 (QSOX1) and vitamin K epoxide reductase (VKOR). We show that Ero1 is primarily responsible for maintaining cell growth, protein secretion, and recovery from a reductive challenge. We further show by combined depletion with Ero1 that PRDX4 and, for the first time, VKOR contribute to ER oxidation and that depletion of all three activities results in cell death. Of importance, Ero1, PRDX4, or VKOR was individually capable of supporting cell viability, secretion, and recovery after reductive challenge in the near absence of the other two activities. In contrast, no involvement of QSOX1 in ER oxidative processes could be detected. These findings establish VKOR as a significant contributor to disulfide bond formation within the ER.  相似文献   

9.
《Free radical research》2013,47(3):164-171
Abstract

The role of peroxiredoxin-2 (PRDX2) in preventing hydrogen peroxide-induced oxidative stress in the red blood cell was investigated by comparing blood from PRDX2 knockout mice with superoxide dismutase-1 (SOD1) knockout and control mice. Loss of PRDX2 increased basal levels of methemoglobin and heme degradation (a marker for oxidative stress), and reduced red blood cell deformability. In vitro incubation under normoxic conditions, both with and without inhibition of catalase, resulted in a lag phase during which negligible heme degradation occurred followed by a more rapid rate of heme degradation in the absence of PRDX2. The appreciable basal increase in heme degradation for PRDX2 knockout mice, together with the lag during in vitro incubation, implies that PRDX2 neutralizes hydrogen peroxide generated in vivo under the transient hypoxic conditions experienced as the cells pass through the microcirculation.  相似文献   

10.
Leung YK  Lee MT  Lam HM  Tarapore P  Ho SM 《Steroids》2012,77(7):727-737
Estrogen receptor (ER) β was discovered over a decade ago. The design of most studies on this receptor was based on knowledge of its predecessor, ERα. Although breast cancer (BCa) has been a main focus of ERβ research, its precise roles in breast carcinogenesis remain elusive. Data from in vitro models have not always matched those from observational or clinical studies. Several inherent factors may contribute to these discrepancies: (a) several ERβ spliced variants are expressed at the protein level, and isoform-specific antibodies are unavailable for some variants; (b) post-translational modifications of the receptor regulate receptor functions; (c) the role of the receptor differs significantly depending on the type of ligands, cis-elements, and co-regulators that interact with the receptor; and (d) the diversity of distribution of the receptor among intracellular organelles of BCa cells. This review addresses the gaps in knowledge in ERβ research as it pertains to BCa regarding the following questions: (1) is ERβ a tumor suppressor in BCa?; (2) do ERβ isoforms play differential roles in breast carcinogenesis?; (3) do nuclear signaling and extranuclear ERβ signaling differ in BCa?; (4) what are the consequences of post-translational modifications of ERβ in BCa?; (5) how do co-regulators and interacting proteins increase functional diversity of ERβ?; and (6) how do the types of ligand and regulatory cis-elements affect the action of ERβ in BCa?. Insights gained from these key questions in ERβ research should help in prevention, diagnosis/prognosis, and treatment of BCa.  相似文献   

11.
12.
13.
Glucagon-like peptide-1 receptor (GLP-1R) is closely associated with the onset of diabetes and its complications. However, its roles in diabetic retinopathy are unknown. Retinal pigment epithelial (RPE) cells are a crucial component of the outer blood–retina barrier and their death is related to the progression of diabetic retinopathy. Thus, we examined the pathophysiological role of GLP-1R in RPE cell apoptosis. We found that GLP-1R expression was lower in the isolated neuroretina and RPE cells of streptozotocin-treated rats than in vehicle-treated rats. High-glucose treatment also decreased GLP-1R expression in a human RPE cell line (ARPE-19 cells). GLP-1R was silenced in ARPE-19 cells, in order to elucidate the pathophysiological roles of GLP-1R. This increased intracellular reactive oxygen species (ROS) generation and activated p53-mediated Bax promoter and endoplasmic reticulum (ER) stress signaling. We also found that GLP-1R knockdown-mediated p53 expression was regulated by ER stress. Interestingly, antioxidant treatment and peroxiredoxin 1 (Prx1) overexpression attenuated GLP-1R knockdown-induced ER stress signaling and p53 expression. Finally, to confirm that GLP-1R activation has protective effects, ARPE-19 cells were treated with exendin-4, a synthetic GLP-1R agonist. This attenuated high-glucose-induced ROS generation, ER stress signaling, and p53 expression. Collectively, these results indicated that hyperglycemia decreases GLP-1R expression in RPE cells. Such a decrease generates intracellular ROS, which increases ER stress-mediated p53 expression, and subsequently causes apoptosis by increasing Bax promoter activity. Our data suggested that regulation of GLP-1R expression is a promising approach for the treatment of diabetic retinopathy.  相似文献   

14.
15.
BackgroundAccumulating evidence has shown that methionine- and choline-deficient high fat (MCD+HF) diet induces the development of nonalcoholic fatty liver disease (NAFLD), in which elevated reactive oxygen species play a crucial role. We have reported that peroxiredoxin 4 (PRDX4), a unique secretory member of the PRDX antioxidant family, protects against NAFLD progression. However, the detailed mechanism and potential effects on the intestinal function still remain unclear.ConclusionOur present data provide the first evidence of the beneficial effects of PRDX4 on intestinal function in the reduction of the severity of NAFLD, by ameliorating oxidative stress-induced local and systemic injury. We can suggest that both liver and intestine are spared, to some degree, by the antioxidant properties of PRDX4.  相似文献   

16.
The peroxiredoxins define an emerging family of peroxidases able to reduce hydrogen peroxide and alkyl hydroperoxides with the use of reducing equivalents derived from thiol-containing donor molecules such as thioredoxin, glutathione, trypanothione and AhpF. Peroxiredoxins have been identified in prokaryotes as well as in eukaryotes. Peroxiredoxin 5 (PRDX5) is a novel type of mammalian thioredoxin peroxidase widely expressed in tissues and located cellularly to mitochondria, peroxisomes and cytosol. Functionally, PRDX5 has been implicated in antioxidant protective mechanisms as well as in signal transduction in cells. We report here the 1.5 A resolution crystal structure of human PRDX5 in its reduced form. The crystal structure reveals that PRDX5 presents a thioredoxin-like domain. Interestingly, the crystal structure shows also that PRDX5 does not form a dimer like other mammalian members of the peroxiredoxin family. In the reduced form of PRDX5, Cys47 and Cys151 are distant of 13.8 A although these two cysteine residues are thought to be involved in peroxide reductase activity by forming an intramolecular disulfide intermediate in the oxidized enzyme. These data suggest that the enzyme would necessitate a conformational change to form a disulfide bond between catalytic Cys47 and Cys151 upon oxidation according to proposed peroxide reduction mechanisms. Moreover, the presence of a benzoate ion, a hydroxyl radical scavenger, was noted close to the active-site pocket. The possible role of benzoate in the antioxidant activity of PRDX5 is discussed.  相似文献   

17.
Peroxiredoxin‐5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca2+ homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca2+ fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH‐SY5Y cells to dissect the role of this enzyme in 1‐methyl‐4‐phenylpyridinium (MPP)+‐induced cell death. Our data show that mitochondria‐dependent apoptosis triggered by MPP+, assessed by the measurement of caspase‐9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca2+, Ca2+‐dependent activation of calpains and Bax cleavage. Finally, using Ca2+ channel inhibitors (Nimodipine, Dantrolene and 2‐APB), we show that Ca2+ release arises essentially from ER stores through 1,4,5‐inositol‐trisphosphate receptors (IP3R). Altogether, our results suggest that the MPP+ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca2+ transporters via a crosstalk between mitochondria and ER.  相似文献   

18.
BMP signaling plays many important roles during organ development, including palatogenesis. Loss of BMP signaling leads to cleft palate formation. During development, BMP activities are finely tuned by a number of modulators at the extracellular and intracellular levels. Among the extracellular BMP antagonists is Noggin, which preferentialy binds to BMP2, BMP4 and BMP7, all of which are expressed in the developing palatal shelves. Here we use targeted Noggin mutant mice as a model for gain of BMP signaling function to investigate the role of BMP signaling in palate development. We find prominent Noggin expression in the palatal epithelium along the anterior-posterior axis during early palate development. Loss of Noggin function leads to overactive BMP signaling, particularly in the palatal epithelium. This results in disregulation of cell proliferation, excessive cell death, and changes in gene expression, leading to formation of complete palatal cleft. The excessive cell death in the epithelium disrupts the palatal epithelium integrity, which in turn leads to an abnormal palate-mandible fusion and prevents palatal shelf elevation. This phenotype is recapitulated by ectopic expression of a constitutively active form of BMPR-IA but not BMPR-IB in the epithelium of the developing palate; this suggests a role for BMPR-IA in mediating overactive BMP signaling in the absence of Noggin. Together with the evidence that overexpression of Noggin in the palatal epithelium does not cause a cleft palate defect, we conclude from our results that Noggin mediated modulation of BMP signaling is essential for palatal epithelium integrity and for normal palate development.  相似文献   

19.
Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions.  相似文献   

20.
Peroxiredoxin 5 (PRDX5) is a novel thioredoxin peroxidase recently identified in a variety of human cells and tissues, which is considered to play an important role in oxidative stress protection mechanisms. However, little is known about its expression in tendon degeneration, a common and disabling condition that primarily affects older people, in which oxidative stress may be implicated. The present study demonstrated that normal human tendon expresses PRDX5 and its expression is significantly increased in degenerative tendon. In addition, we have localized PRDX5 to fibroblasts in normal tendon and to both fibroblasts and endothelial cells in degenerate tendon. The differential expression of PRDX5 in normal and degenerate tendon shows that a thioredoxin peroxidase with antioxidant properties is upregulated under pathophysiological conditions and suggests that oxidative stress may be involved in the pathogenesis of tendon degeneration. PRDX5 may play a protective role against oxidative stress during this pathophysiological process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号