首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
Autophagy     
《Autophagy》2013,9(10):1477-1493
  相似文献   

3.
Autophagy targets cytoplasmic cargo to a lytic compartment for degradation. Autophagy-related (Atg) proteins, including the transmembrane protein Atg9, are involved in different steps of autophagy in yeast and mammalian cells. Functional classification of core Atg proteins in plants has not been clearly confirmed, partly because of the limited availability of reliable assays for monitoring autophagic flux. By using proUBQ10-GFP-ATG8a as an autophagic marker, we showed that autophagic flux is reduced but not completely compromised in Arabidopsis thaliana atg9 mutants. In contrast, we confirmed full inhibition of auto-phagic flux in atg7 and that the difference in autophagy was consistent with the differences in mutant phenotypes such as hypersensitivity to nutrient stress and selective autophagy. Autophagic flux is also reduced by an inhibitor of phosphatidylinositol kinase. Our data indicated that atg9 is phenotypically distinct from atg7 and atg2 in Arabidopsis, and we proposed that ATG9 and phosphatidylinositol kinase activity contribute to efficient autophagy in Arabidopsis.  相似文献   

4.
《Autophagy》2013,9(8):1118-1130
Mammalian white adipocytes have a unique structure in which nearly the entire cell volume is occupied by a single large lipid droplet, while the surrounding cytoplasm occupies minimal space. The massive cytoplasmic remodeling processes involved in the formation of this unique cellular structure are poorly defined. Autophagy is a membrane trafficking process leading to lysosomal degradation of cytoplasmic components. Here, we investigated the functional role of atg5, a gene encoding an essential protein required for autophagy, in adipocyte differentiation in a cellular model and in mice. Massive autophagy was activated when wild type primary mouse fibroblasts (MEFs) were induced for adipocyte differentiation. Importantly, the autophagy deficient primary atg5-/- MEFs exhibited dramatically reduced efficiency in adipogenesis. Time-lapse microscopy revealed that atg5-/- MEFs initially appeared to differentiate normally; however, a majority of the differentiating atg5-/- cells ultimately failed to undergo further morphological transformation and eventually died, likely through apoptosis. Consistent with these in vitro results, histological analysis revealed that the atg5-/- late-stage embryos and neonatal pups had much less subcutaneous perilipin A-positive adipocytes. Consistently, when treated with chloroquine, a functional inhibitor of autophagy, wild type MEFs exhibited drastically reduced efficiency of adipocyte differentiation. Taken together, these findings demonstrated that Atg5 is involved in normal adipocyte differentiation, suggesting an important role of autophagy in adipogenesis.  相似文献   

5.
The mycotoxin deoxynivalenol (DON) contaminates agricultural commodities worldwide, posing health threats to humans and animals. Associated with DON are derivatives, such as deepoxy-deoxynivalenol (DOM-1), produced by enzymatic transformation of certain intestinal bacteria, which are naturally occurring or applied as feed additives. Using differentiated porcine intestinal epithelial cells (IPEC-J2), we provide the first multi-parameter comparative cytotoxicity analysis of DON and DOM-1, based on the parallel evaluation of lysosomal activity, total protein content, membrane integrity, mitochondrial metabolism and ATP synthesis. The study investigated the ability of DON and—for the first time of its metabolite DOM-1—to induce apoptosis, mitogen-activated protein kinase (MAPK) signalling, oxidative events and alterations of mitochondrial structure in porcine intestinal epithelial cells (IECs). The degree of DON toxicity strongly varied, depending on the cytotoxicity parameter evaluated. DON compromised viability according to the parameters of lysosomal activity, total protein content and membrane integrity, but increased viability according to assays based on mitochondrial metabolism and ATP synthesis. DON induced expression of cleaved caspase-3 (maximum induction 3.9-fold) and MAPK p38 and p42/p44 (maximum induction 2.51- and 2.30-fold, respectively). DON altered mitochondrial morphology, but did not increase intracellular ROS. DOM-1-treated IPEC-J2 remained unaffected at equimolar concentrations in all assays, thereby confirming the safety of feed additives using DON- to DOM-1-transforming bacteria. The study additionally highlights that an extensive multi-parameter analysis significantly contributes to the quality of in vitro data.  相似文献   

6.
Mathew R  White E 《Autophagy》2007,3(5):502-505
Cells exploit autophagy for survival to metabolic stress in vitro as well as in tumors where it localizes to regions of metabolic stress suggesting its role as a survival pathway. Consistent with this survival function, deficiency in autophagy impairs cell survival, but also promotes tumor growth, creating a paradox that the loss of a survival pathway leads to tumorigenesis. There is evidence that autophagy is a homeostatic process functioning to limit the accumulation of poly-ubiquitinated proteins and mutant protein aggregates associated with neuronal degeneration. Interestingly, we found that deficiency in autophagy caused by monoallelic loss of beclin1 or deletion of atg5 leads to accelerated DNA damage and chromosomal instability demonstrating a mutator phenotype. These cells also exhibit enhanced chromosomal gains or losses suggesting that autophagy functions as a tumor suppressor by limiting chromosomal instability. Thus the impairment of survival to metabolic stress due to deficiency in autophagy may be compensated by an enhanced mutation rate thereby promoting tumorigenesis. The protective role of autophagy may be exploited in developing novel autophagy modulators as rational chemotherapeutic as well as chemopreventive agents.  相似文献   

7.
8.
Wu Y  Li X  Zhu JX  Xie W  Le W  Fan Z  Jankovic J  Pan T 《Neuro-Signals》2011,19(3):163-174
Excessive misfolded proteins and/or dysfunctional mitochondria, which may cause energy deficiency, have been implicated in the etiopathogenesis of Parkinson's disease (PD). Enhanced clearance of misfolded proteins or injured mitochondria via autophagy has been reported to have neuroprotective roles in PD models. The fact that resveratrol is a known compound with multiple beneficial effects similar to those associated with energy metabolism led us to explore whether neuroprotective effects of resveratrol are related to its role in autophagy regulation. We tested whether modulation of mammalian silent information regulator 2 (SIRT1) and/or metabolic energy sensor AMP-activated protein kinase (AMPK) are involved in autophagy induction by resveratrol, leading to neuronal survival. Our results showed that resveratrol protected against rotenone-induced apoptosis in SH-SY5Y cells and enhanced degradation of α-synucleins in α-synuclein-expressing PC12 cell lines via autophagy induction. We found that suppression of AMPK and/or SIRT1 caused decrease of protein level of LC3-II, indicating that AMPK and/or SIRT1 are required in resveratrol-mediated autophagy induction. Moreover, suppression of AMPK caused inhibition of SIRT1 activity and attenuated protective effects of resveratrol on rotenone-induced apoptosis, further suggesting that AMPK-SIRT1-autophagy pathway plays an important role in the neuroprotection by resveratrol on PD cellular models.  相似文献   

9.
The numerous pores in the basement membrane (BM) of the intestinal villi are essential for the communication of enterocytes with cells in the lamina propria, an important mechanism for the induction of intestinal immune responses. The intestinal epithelial barrier is affected by the mycotoxin deoxynivalenol (DON) from both the apical (luminal) and basolateral (serosal) side. The pig is the most susceptible species to the anorectic and immune-modulating effects of DON, which is most prevalent in crops. We analysed in pigs the effect of DON-contaminated feed on the composition and perforation of the BM and the presence of CD16+ cells or their dendrites in the epithelium. In addition to in vivo experiments, in vitro studies were carried out. Using microarray analyses, the effects of DON on IPEC-J2 cells were studied with the focus on the BM. Our in vivo results showed in the control pigs: (1) a significant increased pore number (p?≤?0.001) in the jejunum in comparison to ileum, (2) no difference in the pore size, and (3) comparable frequency of intraepithelial CD16+ cells/dendrites in the jejunum and ileum. There was a marked trend that DON feeding increases: (1) the pore number in jejunum, and (2) the number of CD16+ cells/dendrites in the epithelium (Tukey–Kramer; p?=?0.055 and p?=?0.067, respectively). The in vivo results were extended with microarray analyses of epithelial cell (IPEC-J2 cells). The down-regulation of genes like syndecan, fibulin 6 and BM-40 was observed. These proteins are important factors in the BM composition and in formation of pores. Our results provide evidence that already low basolateral concentrations of DON (50 ng/mL) influence the production of the BM protein laminin by epithelial cells. Thus, DON affects the composition of the BM.  相似文献   

10.
11.
The identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagy-related 4B, cysteine peptidase/autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase in parallel with the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b−/− mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohn disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b−/− mice. Taken together, these results provided additional evidence for the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency.  相似文献   

12.

Background and Aims

Deoxynivalenol (DON) is a Fusarium derived mycotoxin, often occurring on cereals used for human and animal nutrition. The intestine, as prominent barrier for nutritional toxins, has to handle the mycotoxin from the mucosa protected luminal side (apical exposure), as well as already absorbed toxin, reaching the cells from basolateral side via the blood stream. In the present study, the impact of the direction of DON exposure on epithelial cell behaviour and intestinal barrier integrity was elucidated.

Methods

A non-transformed intestinal porcine epithelial cell line (IPEC-J2), cultured in membrane inserts, serving as a polarised in vitro model to determine the effects of deoxynivalenol (DON) on cellular viability and tight junction integrity.

Results

Application of DON in concentrations up to 4000 ng/mL for 24, 48 and 72 hours on the basolateral side of membrane cultured polarised IPEC-J2 cells resulted in a breakdown of the integrity of cell connections measured by transepithelial electrical resistance (TEER), as well as a reduced expression of the tight junction proteins ZO-1 and claudin 3. Epithelial cell number decreased and nuclei size was enlarged after 72 h incubation of 4000 ng/mL DON from basolateral. Although necrosis or caspase 3 mediated apoptosis was not detectable after basolateral DON application, cell cycle analysis revealed a significant increase in DNA fragmentation, decrease in G0/G1 phase and slight increase in G2/M phase after 72 hours incubation with DON 2000 ng/mL.

Conclusions

Severity of impact of the mycotoxin deoxynivalenol on the intestinal epithelial barrier is dependent on route of application. The epithelium appears to be rather resistant towards apical (luminal) DON application whereas the same toxin dose from basolateral severely undermines barrier integrity.  相似文献   

13.
Autophagy is a lysosomal degradation system by which cytosolic materials and damaged organelles are broken down into basic components. To explore the physiological role of autophagy in glomerular endothelial cells (GEnCs), we compared the autophagic flux among cells in the kidney under starvation. Inhibition of autophagy by chloroquine administration significantly increased the number of autophagosomes or autolysosomes in GEnCs and proximal tubular cells, but not in podocytes, suggesting that the GEnCs exhibit substantial autophagic activity. Next, we analyzed endothelial and hematopoietic cell-specific atg5-deficient mice (atg5-conditional KO [cKO] mice). Glomeruli of 4-wk-old atg5-cKO mice exhibited slightly distended capillary loops accompanied by an accumulation of reactive oxygen species (ROS). Glomeruli of 8-wk-old atg5-cKO mice showed a lobular pattern with thickening of the capillary loops and mesangial matrix expansion; however, the vasculature of other organs was preserved. The atg5-cKO mice died by 12 wk of age, presumably due to pancytopenia resulting from the defect in their hematopoietic lineages. Therefore, we subjected 4-wk atg5-cKO mice to irradiation followed by bone marrow transplantation from normal littermates. Transplanted mice recapitulated the glomerular phenotypes of the atg5-cKO mice with no obvious histological changes in other organs. Twelve-mo-old transplanted mice developed mesangiolysis and glomerulosclerosis with significant deterioration of kidney function. Administration of N-acetyl-l-cysteine, a ROS scavenger, to atg5-cKO mice rescued the glomerular phenotypes. These data suggest that endothelial autophagy protects glomeruli from oxidative stress and maintains the integrity of glomerular capillaries. Enhancing endothelial autophagy may provide a novel therapeutic approach to minimizing glomerular diseases.  相似文献   

14.
Lun Zhao  Li Deng  Qing Zhang  Xue Jing  Meng Ma  Bin Yi 《Autophagy》2018,14(4):702-714
Sulfonylurea (SU) herbicides inhibit branched-chain amino acid (BCAA) biosynthesis by targeting acetolactate synthase. Plants have evolved target-site resistance and metabolic tolerance to SU herbicides; the GCN2 (general control non-repressible 2) pathway is also involved in SU tolerance. Here, we report a novel SU tolerance mechanism, autophagy, which we call ‘homeostatic tolerance,’ is involved in amino acid signaling in Arabidopsis. The activation and reversion of autophagy and GCN2 by the SU herbicide tribenuron-methyl (TM) and exogenous BCAA, respectively, confirmed that TM-induced BCAA starvation is responsible for the activation of autophagy and GCN2. Genetic and biochemical analyses revealed a lower proportion of free BCAA and more sensitive phenotypes in atg5, atg7, and gcn2 single mutants than in wild-type seedlings after TM treatment; the lowest proportion of free BCAA and the most sensitive phenotypes were found in atg5 gcn2 and atg7 gcn2 double mutants. Immunoblotting and microscopy revealed that TM-induced activation of autophagy and GCN2 signaling do not depend on the presence of each other, and these 2 pathways may serve as mutually compensatory mechanisms against TM. TM inhibited the TOR (target of rapamycin), and activated autophagy in an estradiol-induced TOR RNAi line, suggesting that TM-induced BCAA starvation activates autophagy, probably via TOR inactivation. Autophagy and GCN2 were also activated, and independently contributed to TM tolerance in plants conferring metabolic tolerance. Together, these data suggest that autophagy is a proteolytic process for amino acid recycling and contributes to GCN2-independent SU tolerance, probably by its ability to replenish fresh BCAA.  相似文献   

15.
Defects in basal autophagy limit the nutrient supply from recycling of intracellular constituents. Despite our understanding of the prosurvival role of macroautophagy/autophagy, how nutrient deprivation, caused by compromised autophagy, affects oncogenic KRAS-driven tumor progression is poorly understood. Here, we demonstrate that conditional impairment of the autophagy gene Atg5 (atg5-KO) extends the survival of KRASG12V-driven tumor-bearing mice by 38%. atg5-KO tumors spread more slowly during late tumorigenesis, despite a faster onset. atg5-KO tumor cells displayed reduced mitochondrial function and increased mitochondrial fragmentation. Metabolite profiles indicated a deficiency in the nonessential amino acid asparagine despite a compensatory overexpression of ASNS (asparagine synthetase), key enzyme for de novo asparagine synthesis. Inhibition of either autophagy or ASNS reduced KRASG12V-driven tumor cell proliferation, migration, and invasion, which was rescued by asparagine supplementation or knockdown of MFF (mitochondrial fission factor). Finally, these observations were reflected in human cancer-derived data, linking ASNS overexpression with poor clinical outcome in multiple cancers. Together, our data document a widespread yet specific asparagine homeostasis control by autophagy and ASNS, highlighting the previously unrecognized role of autophagy in suppressing the metabolic barriers of low asparagine and excessive mitochondrial fragmentation to permit malignant KRAS-driven tumor progression.  相似文献   

16.
《Autophagy》2013,9(5):785-802
AMP-activated protein kinase (AMPK) is a crucial energy sensor and plays a key role in integration of cellular functions to maintain homeostasis. Despite this, it is largely unknown whether targeting the AMPK pathway can be used as a therapeutic strategy for infectious diseases. Herein, we show that AMPK activation robustly induces antibacterial autophagy, which contributes to antimicrobial defense against Mycobacterium tuberculosis (Mtb). AMPK activation led to inhibition of Mtb-induced phosphorylation of the mechanistic target of rapamycin (MTOR) in macrophages. In addition, AMPK activation increased the genes involved in oxidative phosphorylation, mitochondrial ATP production, and biogenesis in Mtb-infected macrophages. Notably, peroxisome proliferator-activated receptor-gamma, coactivator 1α (PPARGC1A) was required for AMPK-mediated antimicrobial activity, as well as enhancement of mitochondrial function and biogenesis, in macrophages. Further, the AMPK-PPARGC1A pathway was involved in the upregulation of multiple autophagy-related genes via CCAAT/enhancer binding protein (C/EBP), β (CEBPB). PPARGC1A knockdown inhibited the AMPK-mediated induction of autophagy and impaired the fusion of phagosomes with MAP1LC3B (LC3B) autophagosomes in Mtb-infected macrophages. The link between autophagy, mitochondrial function, and antimicrobial activity was further demonstrated by studying LysMCre-mediated knockout of atg7, demonstrating mitochondrial ultrastructural defects and dysfunction, as well as blockade of antimicrobial activity against mycobacteria. Collectively, our results identify the AMPK-PPARGC1A axis as contributing to autophagy activation leading to an antimicrobial response, as a novel host defense mechanism.  相似文献   

17.
Ribosomes account for a majority of the cell''s RNA and much of its protein and represent a significant investment of cellular resources. The turnover and degradation of ribosomes has been proposed to play a role in homeostasis and during stress conditions. Mechanisms for the turnover of rRNA and ribosomal proteins have not been fully elucidated. We show here that the RNS2 ribonuclease and autophagy participate in RNA turnover in Arabidopsis thaliana under normal growth conditions. An increase in autophagosome formation was seen in an rns2–2 mutant, and this increase was dependent on the core autophagy genes ATG9 and ATG5. Autophagosomes and autophagic bodies in rns2–2 mutants contain RNA and ribosomes, suggesting that autophagy is activated as an attempt to compensate for loss of rRNA degradation. Total RNA accumulates in rns2–2, atg9–4, atg5–1, rns2–2 atg9–4, and rns2–2 atg5–1 mutants, suggesting a parallel role for autophagy and RNS2 in RNA turnover. rRNA accumulates in the vacuole in rns2–2 mutants. Vacuolar accumulation of rRNA was blocked by disrupting autophagy via an rns2–2 atg5–1 double mutant but not by an rns2–2 atg9–4 double mutant, indicating that ATG5 and ATG9 function differently in this process. Our results suggest that autophagy and RNS2 are both involved in homeostatic degradation of rRNA in the vacuole.  相似文献   

18.
Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKβ. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2-Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKβ and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1-Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition.  相似文献   

19.
Wang Q  Liang B  Shirwany NA  Zou MH 《PloS one》2011,6(2):e17234
Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK) by mitochondria-derived reactive oxygen species (ROS) is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC) treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG). Treatment of BAEC with 2-DG (5 mM) for 24 hours or with low concentrations of H(2)O(2) (100 μM) induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine) or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.  相似文献   

20.
Autophagy is a process whereby cytoplasmic proteins and organelles are sequestered for bulk degradation in the vacuole/lysosome. At present, 16 ATG genes have been found that are essential for autophagosome formation in the yeast Saccharomyces cerevisiae. Most of these genes are also involved in the cytoplasm to vacuole transport pathway, which shares machinery with autophagy. Most Atg proteins are colocalized at the pre-autophagosomal structure (PAS), from which the autophagosome is thought to originate, but the precise mechanism of autophagy remains poorly understood. During a genetic screen aimed to obtain novel gene(s) required for autophagy, we identified a novel ORF, ATG29/YPL166w. atg29Delta cells were sensitive to starvation and induction of autophagy was severely retarded. However, the Cvt pathway operated normally. Therefore, ATG29 is an ATG gene specifically required for autophagy. Additionally, an Atg29-GFP fusion protein was observed to localize to the PAS. From these results, we propose that Atg29 functions in autophagosome formation at the PAS in collaboration with other Atg proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号