首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Orally administered nitrite exerts antihypertensive effects associated with increased gastric nitric oxide (NO) formation. While reducing agents facilitate NO formation from nitrite, no previous study has examined whether antioxidants with reducing properties improve the antihypertensive responses to orally administered nitrite. We hypothesized that TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) could enhance the hypotensive effects of nitrite in hypertensive rats by exerting antioxidant effects (and enhancing NO bioavailability) and by promoting gastric nitrite-derived NO generation. The hypotensive effects of intravenous and oral sodium nitrite were assessed in unanesthetized freely moving rats with L-NAME (Nω-nitro-L-arginine methyl ester; 100 mg/kg; po)-induced hypertension treated with TEMPOL (18 mg/kg; po) or vehicle. While TEMPOL exerted antioxidant effects in hypertensive rats, as revealed by lower plasma 8-isoprostane and vascular reactive oxygen species levels, this antioxidant did not affect the hypotensive responses to intravenous nitrite. Conversely, TEMPOL enhanced the dose-dependent hypotensive responses to orally administered nitrite, and this effect was associated with higher increases in plasma nitrite and lower increases in plasma nitrate concentrations. In vitro experiments using electrochemical and chemiluminescence NO detection under variable pH conditions showed that TEMPOL enhanced nitrite-derived NO formation, especially at low pH (2.0 to 4.0). TEMPOL signal evaluated by electron paramagnetic resonance decreased when nitrite was reduced to NO under acidic conditions. Consistent with these findings, increasing gastric pH with omeprazole (30 mg/kg; po) attenuated the hypotensive responses to nitrite and blunted the enhancement in plasma nitrite concentrations and hypotensive effects induced by TEMPOL. Nitrite-derived NO formation in vivo was confirmed by using the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (C-PTIO), which blunted the responses to oral nitrite. Our results showed that TEMPOL promotes nitrite reduction to NO in the stomach and enhanced plasma nitrite concentrations and the hypotensive effects of oral sodium nitrite through mechanisms critically dependent on gastric pH. Interestingly, the effects of TEMPOL on nitrite-mediated hypotension cannot be explained by increased NO formation in the stomach alone, but rather appear more directly related to increased plasma nitrite levels and reduced nitrate levels during TEMPOL treatment. This may relate to enhanced nitrite uptake or reduced nitrate formation from NO or nitrite.  相似文献   

2.
The new pathway nitrate-nitrite-nitric oxide (NO) has emerged as a physiological alternative to the classical enzymatic pathway for NO formation from l-arginine. Nitrate is converted to nitrite by commensal bacteria in the oral cavity and the nitrite formed is then swallowed and reduced to NO under the acidic conditions of the stomach. In this study, we tested the hypothesis that increases in gastric pH caused by omeprazole could decrease the hypotensive effect of oral sodium nitrite. We assessed the effects of omeprazole treatment on the acute hypotensive effects produced by sodium nitrite in normotensive and L-NAME-hypertensive free-moving rats. In addition, we assessed the changes in gastric pH and plasma levels of nitrite, NO(x) (nitrate+nitrite), and S-nitrosothiols caused by treatments. We found that the increases in gastric pH induced by omeprazole significantly reduced the hypotensive effects of sodium nitrite in both normotensive and L-NAME-hypertensive rats. This effect of omeprazole was associated with no significant differences in plasma nitrite, NO(x), or S-nitrosothiol levels. Our results suggest that part of the hypotensive effects of oral sodium nitrite may be due to its conversion to NO in the acidified environment of the stomach. The increase in gastric pH induced by treatment with omeprazole blunts part of the beneficial cardiovascular effects of dietary nitrate and nitrite.  相似文献   

3.
Salivary nitrate is reduced to nitric oxide (NO) via nitrite in the human oral cavity. The nitrite and NO formed can be transformed to reactive nitrogen oxide species (RNOS). In this investigation, RNOS formed in mixed whole saliva and its fractions were detected by the oxidation of aminophenyl fluorescein (APF) and the transformation of 3-amino-4-monomethylamino-2′,7′-difluorofluorecein (DAF-FM) to its triazol form (DAF-FMT). Nitrite-induced oxidation of APF and formation of DAF-FMT increased as pH was decreased from 7 to 5 and SCN? inhibited the oxidation of APF and the formation of DAF-FMT around neutral pH and enhanced at pH about 5. The SCN?-dependent inhibition was due to the suppression of salivary peroxidase and the enhancement was due to the formation of NOSCN from HNO2 and SCN?. It is deduced that the increase in the concentrations of nitrite and H+ in the oral cavity may result in the enhanced formation of RNOS.  相似文献   

4.
The clinical implications of the nitrate–nitrite–nitric oxide pathway have been extensively studied in recent years. However, the physiological impact of bioactive nitrogen oxides produced from dietary nitrate has remained largely elusive. Here, we report a hitherto unrecognized nitrite-dependent nitrating pathway that targets tight junction proteins in the stomach. Inorganic nitrate, nitrite or saliva obtained after the consumption of lettuce were administered by oral gavage to Wistar rats. The enterosalivary circulation of nitrate was allowed to occur for 4?h after which the animals were euthanized and the stomach collected. Nitrated occludin was detected by immunoprecipitation in the gastric epithelium upon inorganic nitrite administration (p??NO production rates from inorganic and salivary nitrite under simulated gastric conditions, suggests that competing reactions at acidic pH determine the production of nitrating agents (?NO2) or other, more stable, oxides. Accordingly, it is shown in vitro that salivary nitrite yields higher steady state concentrations of ?NO (0.37?±?0.01?μM) than sodium nitrite (0.12?±?0.03?μM). Dietary-dependent reactions involving the production of nitrogen oxides should be further investigated as, in the context of occludin nitration, the consumption of green leafy vegetables (with high nitrate content), if able to modulate gut barrier function, may have important implications in the context of leaky gut disorders.  相似文献   

5.
We have used a quadrupole mass spectrometer with a gas-permeable membrane inlet for continuous measurements of the production of N2O and N2 from nitrate or nitrite by cell suspensions of Paracoccus denitrificans. The use of nitrate and nitrite labeled with 15N was shown to simplify the interpretation of the results when these gases were measured. This approach was used to study the effect of pH on the production of denitrification intermediates from nitrate and nitrite under anoxic conditions. The kinetic patterns observed were quite different at acidic and alkaline pH values. At pH 5.5, first nitrate was converted to nitrite, then nitrite was converted to N2O, and finally N2O was converted to N2. At pH 8.5, nitrate was converted directly to N2, and the intermediates accumulated to only low steady-state concentrations. The sequential usage of nitrate, nitrite, and nitrous oxide observed at pH 5.5 was simulated by using a kinetic model of a branched electron transport chain in which alternative terminal reductases compete for a common reductant.  相似文献   

6.
Background. Nitric oxide (NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate–nitrite–NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity.Objective. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods.Design. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC–MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH.Result. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a NO carrier throughout the body.Conclusion. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare.  相似文献   

7.
BackgroundInorganic nitrate from exogenous and endogenous sources is accumulated in saliva, reduced to nitrite by oral bacteria and further converted to nitric oxide (NO) and other bioactive nitrogen oxides in the acidic gastric lumen. To further explore the role of oral microbiota in this process we examined the gastric mucus layer in germ free (GF) and conventional mice given different doses of nitrate and nitrite.MethodsMice were given either nitrate (100 mg/kg/d) or nitrite (0.55–11 mg/kg/d) in the drinking water for 7 days, with the lowest nitrite dose resembling the levels provided by swallowing of fasting saliva. The gastric mucus layer was measured in vivo.ResultsGF animals were almost devoid of the firmly adherent mucus layer compared to conventional mice. Dietary nitrate increased the mucus thickness in conventional animals but had no effect in GF mice. In contrast, nitrite at all doses, restored the mucus thickness in GF mice to the same levels as in conventional animals. The nitrite-mediated increase in gastric mucus thickness was not inhibited by the soluble guanylyl cyclase inhibitor ODQ. Mice treated with antibiotics had significantly thinner mucus than controls. Additional studies on mucin gene expression demonstrated down regulation of Muc5ac and Muc6 in germ free mice after nitrite treatment.ConclusionOral bacteria remotely modulate gastric mucus generation via bioactivation of salivary nitrate. In the absence of a dietary nitrate intake, salivary nitrate originates mainly from NO synthase. Thus, oxidized NO from the endothelium and elsewhere is recycled to regulate gastric mucus homeostasis.  相似文献   

8.
Inorganic nitrite, derived from the reduction of nitrate in saliva, has recently emerged as a protagonist in nitric oxide (?NO) biology as it can be univalently reduced to ?NO, in the healthy human stomach. Important physiological implications have been attributed to nitrite-derived ?NO in the gastrointestinal tract, namely modulation of host defense, blood flow, mucus formation and motility. At acidic pH, nitrite generates different nitrogen oxides depending on the local microenvironment (redox status, gastric content, pH, inflammatory conditions), including ?NO, nitrogen dioxide (?NO2), dinitrogen trioxide (N2O3), and peroxynitrite. Thus, the gastric environment is a significant source of nitrating and nitrosating agents, especially in individuals consuming a nitrate/nitrite-rich diet on a daily basis. Both, the gastric lumen and mucosa contain putative targets for nitration, not only proteins and lipids from ingested aliments but also endogenous proteins secreted by the oxyntic glands. The physiological and functional consequences of nitration of gastric mediators will impact on local processes including food digestion and ulcerogenesis. Additionally, gastric nitration products (such as nitrated lipids) may be absorbed and affect systemic pathways. Thus, dietary ingestion of nitrate will have direct consequences for endogenous protein nitration, as indicated by our preliminary data.  相似文献   

9.
Up to 25% of the circulating nitrate in blood is actively taken up, concentrated, and secreted into saliva by the salivary glands. Salivary nitrate can be reduced to nitrite by the commensal bacteria in the oral cavity or stomach and then further converted to nitric oxide (NO) in vivo, which may play a role in gastric protection. However, whether salivary nitrate is actively secreted in human beings has not yet been determined. This study was designed to determine whether salivary nitrate is actively secreted in human beings as an acute stress response and what role salivary nitrate plays in stress-induced gastric injury. To observe salivary nitrate function under stress conditions, alteration of salivary nitrate and nitrite was analyzed among 22 healthy volunteers before and after a strong stress activity, jumping down from a platform at the height of 68 m. A series of stress indexes was analyzed to monitor the stress situation. We found that both the concentration and the total amount of nitrate in mixed saliva were significantly increased in the human volunteers immediately after the jump, with an additional increase 1 h later (p<0.01). Saliva nitrite reached a maximum immediately after the jump and was maintained 1 h later. To study the biological functions of salivary nitrate and nitrite in stress protection, we further carried out a water-immersion-restraint stress (WIRS) assay in male adult rats with bilateral parotid and submandibular duct ligature (BPSDL). Intragastric nitrate, nitrite, and NO; gastric mucosal blood flow; and gastric ulcer index (UI) were monitored and nitrate was administrated in drinking water to compensate for nitrate secretion in BPSDL animals. Significantly decreased levels of intragastric nitrate, nitrite, and NO and gastric mucosal blood flow were measured in BPSDL rats during the WIRS assay compared to sham control rats (p<0.05). Recovery was observed in the BPSDL rats upon nitrate administration. The WIRS-induced UI was significantly higher in the BPSDL animals compared to controls, and nitrate administration rescued the WIRS-induced gastric injury in BPSDL rats. In conclusion, this study suggests that stress promotes salivary nitrate secretion and nitrite formation, which may play important roles in gastric protection against stress-induced injury via the nitrate-dependent NO pathway.  相似文献   

10.
The major urinary metabolite of nitrotyrosine is 3-nitro-4-hydroxyphenylacetic acid (3-Nitro-HPA). However, recent animal studies have shown that the majority of urinary 3-Nitro-HPA is derived from nitration of endogenous para-hydroxyphenylacetic acid (HPA), a metabolite of tyrosine. One potential site for the formation of 3-Nitro-HPA is the stomach, where nitrous acid is formed by the reaction of nitrite in saliva with gastric acid. The aim of this study was to determine whether there is pH-dependent nitration of salivary para-hydroxyphenylacetic acid or tyrosine, and the effects of dietary nitrate. Healthy volunteers (n = 18) ingested either a low or high nitrate diet, with and without the administration of omeprazole, a proton pump inhibitor. Urinary 3-Nitro-HPA excretion increased from 197 +/- 52 to 319 +/- 88 microg/day on switching from a low to a high nitrate diet (P < 0.05), and decreased (166 +/- 53 mug/day, P < 0.05) when gastric pH was increased by omeprazole. To determine whether 3-Nitro-HPA can be formed by nitration of para-hydroxyphenylacetic acid in the stomach, 500 microg of deuterated para-hydroxyphenylacetic acid was ingested with a high nitrate meal. This led to the excretion of both deuterated HPA and 3-Nitro-HPA in the urine, confirming that para-hydroxyphenylacetic acid is absorbed, and nitrated. Since omeprazole decreases the formation of 3-Nitro-HPA, presumably by decreasing the nitration of endogenous para-hydroxyphenylacetic acid present in saliva, and the observation that ingested deuterated para-hydroxyphenylacetic acid is nitrated and excreted, we conclude that endogenous para-hydroxyphenylacetic acid is nitrated in the stomach, absorbed, and excreted as 3-Nitro-HPA.  相似文献   

11.
The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health.  相似文献   

12.
In experiments on the prebiotic formation of nitric oxides, anoxic mixtures of N2 and water vapour were sparked in contact with phosphate buffer solutions at various pH values. Nitrite was found in the aqueous phase, and nitrate grew from it, presumably by reaction with H2O2. In acid solutions, these anions were reduced and destroyed by Fe2+, and the same was true of nitrite in solutions kept at a pH value similar to that of the contemporary ocean (8.2) with HEPES buffer. Nitrate was not destroyed in short-term experiments, but as in sparking nitrate is formed only via nitrite, neither anion could accumulate. In further sparking experiments with alkaline sulphide, both nitrite and nitrate were reduced entirely. It is concluded that it is unlikely that the primeval ocean contained appreciable concentrations of nitrite or nitrate either at the reducing or at the redox-neutral stage.  相似文献   

13.
Dietary nitrite and nitrate are important sources of nitric oxide (NO). However, the use of nitrite as an antihypertensive drug may be limited by increased oxidative stress associated with hypertension. We evaluated the antihypertensive effects of sodium nitrite given in drinking water for 4 weeks in two-kidney one-clip (2K1C) hypertensive rats and the effects induced by nitrite on NO bioavailability and oxidative stress. We found that, even under the increased oxidative stress conditions present in 2K1C hypertension, nitrite reduced systolic blood pressure in a dose-dependent manner. Whereas treatment with nitrite did not significantly change plasma nitrite concentrations in 2K1C rats, it increased plasma nitrate levels significantly. Surprisingly, nitrite treatment exerted antioxidant effects in both hypertensive and sham-normotensive control rats. A series of in vitro experiments was carried out to show that the antioxidant effects induced by nitrite do not involve direct antioxidant effects or xanthine oxidase activity inhibition. Conversely, nitrite decreased vascular NADPH oxidase activity. Taken together, our results show for the first time that nitrite has antihypertensive effects in 2K1C hypertensive rats, which may be due to its antioxidant properties resulting from vascular NADPH oxidase activity inhibition.  相似文献   

14.
Shewanella oneidensis exhibits a remarkable versatility in anaerobic respiration, which largely relies on its diverse respiratory pathways. Some of these are expressed in response to the existence of their corresponding electron acceptors (EAs) under aerobic conditions. However, little is known about respiration and the impact of non-oxygen EAs on the physiology of the microorganism when oxygen is present. Here we undertook a study to elucidate the basis for nitrate and nitrite inhibition of growth under aerobic conditions. We discovered that nitrate in the form of NaNO3 exerts its inhibitory effects as a precursor to nitrite at low concentrations and as an osmotic-stress provider (Na+) at high concentrations. In contrast, nitrite is extremely toxic, with 25 mM abolishing growth completely. We subsequently found that oxygen represses utilization of all EAs but nitrate. To order to utilize EAs with less positive redox potential, such as nitrite and fumarate, S. oneidensis must enter the stationary phase, when oxygen respiration becomes unfavorable. In addition, we demonstrated that during aerobic respiration the cytochrome bd oxidase confers S. oneidensis resistance to nitrite, which likely functions via nitric oxide (NO).  相似文献   

15.
The chemical reactions of omeprazole, leading to inhibition of gastric acid secretion, were investigated. In acid buffer solutions, omeprazole was found to be labile, whereas at physiological pH it was stable ( ). The stability of omeprazole was also studied in isolated, acid producing, gastric glands under conditions where acid formation was either stimulated or inhibited. The rate of transformation of omeprazole was high ( ) under stimulation. Inhibition of acid formation in the gland greatly retarded the decomposition of omeprazole ( ). The time-course for inhibition of acid formation by omeprazole was parallel to that for decomposition. The major product formed from omeprazole was the reduced form, H 168/22. The inhibitory action of omeprazole was shown to depend on acid-induced transformation, since no inhibition was obtained when omeprazole was incubated under neutral conditions, both in the isolated gastric mucosal- and the (H+ + K+)-ATPase preparations. Despite the fact that H 168/22 was the major product formed in the glandular preparation, it was found to be virtually inactive in both the glandular- and (H+ + K+)-ATPase preparations. Therefore, a model is proposed in which the inhibition of acid formation by omeprazole is mediated by a compound formed during the reduction of omeprazole to H 168/22 within the acid compartments of the parietal cell. Furthermore, mercaptanes, such as β-mercaptoethanol, were found to prevent as well as reverse inhibition by omeprazole in both the glandular- and (H+ + K+)-ATPase preparations. This indicates that -SH groups are most likely involved in the chemical reactions leading to inhibition of acid secretion.  相似文献   

16.
Background & Aims. The acid inhibitory effect of proton pump inhibitors is reported to be greater in the presence than in the absence of an H. pylori infection. This study was undertaken to test the hypothesis that the acid inhibitory effect of omeprazole given twice a day is greater in H. pylori infected healthy volunteers than in the same individuals following eradication because of differences in the pharmacodynamics of omeprazole, greater duodenogastric reflux, the effects of ammonia produced by the H. pylori, or lower gastric juice concentrations of selected cytokines, which may inhibit gastric acid secretion. Materials and Methods. We undertook 24hour pH‐metry in 12 H. pylori‐positive healthy volunteers: (1) when on no omeprazole; (2) when on omeprazole 20 mg bid for 8 days; (3) 2 months after eradication of H. pylori and when on no omeprazole; and (4) after eradication of H. pylori and when on omeprazole 20 mg twice a day. Results. In subjects given omeprazole, eradication of H. pylori reduced pH and percentage pH ≥ 3, as well as increasing the area under the H+ concentration‐time curve. These differences were not due to alterations in (1) gastric juice concentrations of IL‐1α, IL‐8, IL‐13, epidermal growth factor, or bile acids; (2) serum gastrin concentrations; or (3) the pharmacokinetics of omeprazole. There was no change in the difference in the H+ concentration‐time curve ‘without omeprazole’ minus ‘with omeprazole’, when comparing ‘after’ versus ‘before’ eradication of H. pylori. Conclusions. Eradication of H. pylori was not associated with an alteration in the acid inhibitory potency when comparing the difference in gastric acidity ‘with’ versus ‘without’ omeprazole. When the results were expressed by simply taking into account the acid measurements while on omeprazole before versus after eradication of H. pylori, the acid inhibition with omeprazole was greater in the presence than in the absence of a H. pylori infection. The clinical significance of the small difference is not clear.  相似文献   

17.
The reaction between NO, thiols, and oxygen has been studied in some detail in vitro due to its perceived importance in the mechanism of NO-dependent signal transduction. The formation of S-nitrosothiols and thiol disulfides from this chemistry has been suggested to be an important component of the biological chemistry of NO, and such subsequent thiol modifications may result in changes in cellular function and phenotype. In this study we have reinvestigated this reaction using both experiment and simulation and conclude that: (i) S-nitrosation through radical and nonradical pathways is occurring simultaneously, (ii) S-nitrosation through direct addition of NO to thiol does not occur to any meaningful extent, and (iii) protein hydrophobic environments do not catalyze or enhance S-nitrosation of either themselves or of glutathione. We conclude that S-nitrosation and disulfide formation in this system occur only after the initial reaction between NO and oxygen to form nitrogen dioxide, and that hydrophobic protein environments are unlikely to play any role in enhancing and targeting S-nitrosothiol formation.  相似文献   

18.
BackgroundNitroxide antioxidants (RNO) protect from injuries associated with oxidative stress. Tyrosine residues in proteins are major targets for oxidizing species giving rise to irreversible cross-linking and protein nitration, but the mechanisms underlying the protective activity of RNO on these processes are not sufficiently clear.MethodsTyrosine oxidation by the oxoammonium cation (RN+=O) was studied by following the kinetics of RNO formation using EPR spectroscopy. Tyrosine oxidation and nitration were investigated using the peroxidase/H2O2 system without and with nitrite. The inhibitory effect of RNO on these processes was studied by following the kinetics of the evolved O2 and accumulation of tyrosine oxidation and nitration products.ResultsTyrosine ion is readily oxidized by RN+=O, and the equilibrium constant of this reaction depends on RNO structure and reduction potential. RNO catalytically inhibits tyrosine oxidation and nitration since it scavenges both tyrosyl and NO2 radicals while recycling through RN+=O reduction by H2O2, tyrosine and nitrite. The inhibitory effect of nitroxide on tyrosine oxidation and nitration increases as its reduction potential decreases where the 6-membered ring nitroxides are better catalysts than the 5-membered ones.ConclusionsNitroxides catalytically inhibit tyrosine oxidation and nitration. The proposed reaction mechanism adequately fits the results explaining the dependence of the nitroxide inhibitory effect on its reduction potential and on the concentrations of the reducing species present in the system.General significanceNitroxides protect against both oxidative and nitrative damage. The proposed reaction mechanism further emphasizes the role of the reducing environment to the efficacy of these catalysts.  相似文献   

19.
Nitrate and nitrite concentrations in the water and nitrous oxide and nitrite fluxes across the sediment-water interface were measured monthly in the River Colne estuary, England, from December 1996 to March 1998. Water column concentrations of N2O in the Colne were supersaturated with respect to air, indicating that the estuary was a source of N2O for the atmosphere. At the freshwater end of the estuary, nitrous oxide effluxes from the sediment were closely correlated with the nitrite concentrations in the overlying water and with the nitrite influx into the sediment. Increases in N2O production from sediments were about 10 times greater with the addition of nitrite than with the addition of nitrate. Rates of denitrification were stimulated to a larger extent by enhanced nitrite than by nitrate concentrations. At 550 μM nitrite or nitrate (the highest concentration used), the rates of denitrification were 600 μmol N · m−2 · h−1 with nitrite but only 180 μmol N · m−2 · h−1 with nitrate. The ratios of rates of nitrous oxide production and denitrification (N2O/N2 × 100) were significantly higher with the addition of nitrite (7 to 13% of denitrification) than with nitrate (2 to 4% of denitrification). The results suggested that in addition to anaerobic bacteria, which possess the complete denitrification pathway for N2 formation in the estuarine sediments, there may be two other groups of bacteria: nitrite denitrifiers, which reduce nitrite to N2 via N2O, and obligate nitrite-denitrifying bacteria, which reduce nitrite to N2O as the end product. Consideration of free-energy changes during N2O formation led to the conclusion that N2O formation using nitrite as the electron acceptor is favored in the Colne estuary and may be a critical factor regulating the formation of N2O in high-nutrient-load estuaries.  相似文献   

20.
Macrophage-derived nitric oxide (NO) participates in cytotoxic mechanisms against diverse microorganisms and tumor cells. These effects can be mediated by NO itself or NO-derived species such as peroxynitrite formed by its diffusion-controlled reaction with NADPH oxidase-derived superoxide radical anion (O2). In vivo, the facile extracellular diffusion of NO as well as different competing consumption routes limit its bioavailability for the reaction with O2 and, hence, peroxynitrite formation. In this work, we evaluated the extent by which NO diffusion to red blood cells (RBC) can compete with activated macrophages-derived O2 and affect peroxynitrite formation yields. Macrophage-dependent peroxynitrite production was determined by boron-based probes that react directly with peroxynitrite, namely, coumarin-7-boronic acid (CBA) and fluorescein-boronate (Fl-B). The influence of NO diffusion to RBC on peroxynitrite formation was experimentally analyzed in co-incubations of NO and O2-forming macrophages with erythrocytes. Additionally, we evaluated the permeation of NO to RBC by measuring the intracellular oxidation of oxyhemoglobin to methemoglobin. Our results indicate that diluted RBC suspensions dose-dependently inhibit peroxynitrite formation, outcompeting the O2 reaction. Computer-assisted kinetic studies evaluating peroxynitrite formation by its precursor radicals in the presence of RBC are in accordance with experimental results. Moreover, the presence of erythrocytes in the proximity of NO and O2--forming macrophages prevented intracellular Fl-B oxidation pre-loaded in L1210 cells co-cultured with activated macrophages. On the other hand, Fl-B-coated latex beads incorporated in the macrophage phagocytic vacuole indicated that intraphagosomal probe oxidation by peroxynitrite was not affected by nearby RBC. Our data support that in the proximity of a blood vessel, NO consumption by RBC will limit the extracellular formation (and subsequent cytotoxic effects) of peroxynitrite by activated macrophages, while the intraphagosomal yield of peroxynitrite will remain unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号