首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods for controlling tritium in a fusion reactor are reviewed. The characteristic features of the interaction of tritium with surfaces are considered, as well as its diffusive properties and its levels and saturation depths for a number of radioactive materials. New properties of boundary layers and new diffusive properties in the polycrystalline structure of metals are revealed. Unique measurements of the diffusive properties of tritium in stainless steel at room temperature are carried out. It is found that the main contribution to the diffusion process comes from the intergranular tritium flux. The capture of tritium by metals in the ITER device is calculated.  相似文献   

2.
Vascular walls change their dimensions and mechanical properties adaptively in response to blood pressure. Because these responses are driven by the smooth muscle cells (SMCs) in the media, a detailed understanding of the mechanical environment of the SMCs should reveal the mechanism of the adaptation. As the mechanical properties of the media are highly heterogeneous at the microscopic level, the mechanical properties of the cells should be measured directly. The tensile properties of SMCs are, thus, important to reveal the microscopic mechanical environment in vascular tissues; their tensile properties have a close correlation with the distribution and arrangement of elements of the cytoskeletal networks, such as stress fibers and microtubules. In this review, we first introduce the experimental techniques used for tensile testing and discuss the various factors affecting the tensile properties of vascular SMCs. Cytoskeletal networks are particularly important for the mechanical properties of a cell and its mechanism of mechanotransduction; thus, the mechanical properties of cytoskeletal filaments and their effects on whole-cell mechanical properties are discussed with special attention to the balance of intracellular forces among the intracellular components that determines the force applied to each element of the cytoskeletal filaments, which is the key to revealing the mechanotransduction events regulating mechanical adaptation. Lastly, we suggest future directions to connect tissue and cell mechanics and to elucidate the mechanism of mechanical adaptation, one of the key issues of cardiovascular solid biomechanics.  相似文献   

3.
Effect of biofilm on the rheological properties of cohesive sediment   总被引:3,自引:0,他引:3  
Biofilm, a product of metabolic activity, has an important effect on the physico-chemical properties of cohesive sediment. However, little effort has been made to determine the substantial effects of biofilm growth on specific sediment properties, for example rheological properties. Understanding the changes associated with biofilm growth and quantifying the time scales over which these changes occur are important for understanding how biofilms mediate sediment properties and processes and the development of sediment transport mechanics. The effect of biofilm on the rheological properties of cohesive sediment was investigated experimentally. The rheological properties of sediment slurries with and without biofilm at different growth phases were measured and compared. Measurement showed biofilm growth has a significant effect on the rheological properties of cohesive sediment. Rheological equations for biofilm sediment and expressions for rheological properties which change over time are proposed. These equations, and information on biofilm sediment, are important for inclusion of biosedimentological processes in models of sediment dynamics.  相似文献   

4.
Physicochemcial properties of amino acids are important factors in determining protein structure and function. Most approaches make use of averaged properties over entire domains or even proteins to analyze their structure or function. This level of coarseness tends to hide the richness of the variability in the different properties across functional domains. This paper studies the conservation of physicochemical properties in a functionally similar family of proteins using a novel wavelet-based technique known as multiresolution analysis. Such an analysis can help uncover characteristics that can otherwise remain hidden. We have studied the protein kinase family of sequences and our findings are as follows: (a) a number of different properties are conserved over the functional catalytic domain irrespective of the sequence identities; (b) conservation of properties can be observed at different frequency levels and they agree well with the known structural/functional properties of the subdomains for the protein kinase family; (c) structural differences between the different kinase family members are reflected in the waveforms; and (d) functionally important mutations show distortions in the waveforms of conserved properties. The potential usefulness of the above findings in identifying functionally similar sequences in the twilight and midnight zones is demonstrated through a simple prediction model for the protein kinase family which achieved a recall of 93.7% and a precision of 96.75% in cross-validation tests.  相似文献   

5.
A preliminary analysis of the use by bats of National Trust properties revealed that all 14 resident species have been recorded. Comparison with a national database of records for Britain managed by English Nature (NCC Bat database) showed that the scarcer species are better represented roosting in buildings on Trust properties than in other buildings. In addition, survey of Trust properties has shown that a high proportion of buildings are used by bats. Bats provide unusual wildlife links between buildings, gardens and countryside through which the Trust can promote nature conservation, and resolve conflicts between building or landscape restoration and the bat habitat requirements. The role of the County Bat Groups in survey and promotion of bats on Trust properties is becoming increasingly important, especially if we are able to identify key properties for bats.  相似文献   

6.
Obtaining representative values of green wood properties is essential for studies investigating the biomechanical aspects of tree development and ecology. Here, we compare the biomechanical properties of wood stored in various conditions between their collection in the field and their measurement. The study was performed on a large sample of wood specimens from different tropical species and different location in the trees, representing a wide diversity in wood structures. Elastic and viscoelastic properties are measured on green wood, and measured again after storage in different conditions: immersion in cold water during various durations, storage in an ethanol solution with or without washing in water, and air drying with or without rehydration. The systematic and random errors induced by these storage methods are quantified. Storage in cold water is the best way to preserve wood native properties. Soaking in ethanol is a fair alternative regarding elastic properties, but induces a significant change in viscoelastic properties. Air drying causes important, and partly irreversible, changes in mechanical properties. However, regarding elastic properties, this change is a systematic bias so that the air-dried elastic modulus provides a good basis for comparative studies of green wood stiffness.  相似文献   

7.
Vickers NJ 《Chemical senses》2006,31(2):155-166
Terrestrial odor plumes have a physical structure that results from turbulence in the fluid environment. The rapidity of insect flight maneuvers within a plume indicates that their responses are dictated by fleeting (<1 s) rather than longer (>1 s) exposures to odor imposed by physical variables that distribute odor molecules in time and space. Even though encounters with pheromone filaments are brief, male moths responding to female-produced pheromones are remarkably able to extract information relating to the biological properties of these olfactory signals. These properties include the types of molecule present and their relative abundances. Thus, peripheral and central olfactory neurons are capable of representing these biological properties of a pheromone plume within the context of a temporally irregular and unpredictable signal. The mechanisms underlying olfactory processing of these signals with respect to their biological and physical properties are discussed in the context of a behavioral framework.  相似文献   

8.
A B-cell epitope is a part of an antigen that is recognized by a specific antibody or B-cell receptor. Detecting the immunogenic region of the antigen is useful in numerous immunodetection and immunotherapeutics applications. The aim of this paper is to find relevant properties to discriminate the location of potential epitopes from the rest of the protein surface. The most relevant properties, identified using two evaluation approaches, are the geometric properties, followed by the conservation score and some chemical properties, such as the proportion of glycine. The selected properties are used in a patch-based epitope localization method including a Single-Layer Perceptron for regression. The output of this Single-Layer Perceptron is used to construct a probability map on the antigen surface. The predictive performances of the method are assessed by computing the AUC using cross validation on two benchmark data sets and by computing the AUC and the precision for a third independent test set.  相似文献   

9.
Relationships between ecological structure, functions and properties of sediments in intertidal mangrove forests and mudflats are poorly understood. Studies have not yielded consistent results, due to complex interactions between biotic and abiotic components. The benthic macrofauna in mangrove forests are important contributors to ecological functions, mediating various sedimentary properties. They vary in abundance and diversity at scales from centimeters to hundreds of metres in what appears to be similar “habitat”, but properties of sediments are often not measured at such small scales, or small-scale variation is ignored as random noise. Yet, there should be relationships between scales of variation in macrofauna and bio-dependant properties of sediments.This paper describes variation in assemblages of benthic invertebrates and bio-dependant properties of sediments at a hierarchical range of spatial scales, within and among different habitats in an urbanized mangrove forest and the associated intertidal mudflats in Sydney Harbour, Australia. Measurements were made on two occasions, in replicate sites in each habitat. These were used to test hypotheses about relationships of scales of variation in the benthos and sediments. The benthos showed relatively little difference in diversity and abundances among habitats compared to variation within and between sites in each habitat. The bio-dependant properties of the sediment showed less variation at small scales and larger among-habitat variation than did the benthos. Variation in the benthos did not clearly correlate with variation in the selected bio-dependant properties of the sediments at any scales. Neither did the properties of the sediment show consistent correlations in any habitat.These data indicate that the properties and processes driving the benthos are not simply related to the properties of the sediment we measured and that there was very large variation in both benthos and bio-dependant properties within small sites. This highlights the necessity of using experimental designs that sample at a hierarchy of scales for benthic assemblages and bio-dependant properties of sediment.  相似文献   

10.
Patient-specific high order finite-element (FE) models of human femurs based on quantitative computer tomography (QCT) with inhomogeneous orthotropic and isotropic material properties are addressed. The point-wise orthotropic properties are determined by a micromechanics (MM) based approach in conjunction with experimental observations at the osteon level, and two methods for determining the material trajectories are proposed (along organs outer surface, or along principal strains). QCT scans on four fresh-frozen human femurs were performed and high-order FE models were generated with either inhomogeneous MM-based orthotropic or empirically determined isotropic properties. In vitro experiments were conducted on the femurs by applying a simple stance position load on their head, recording strains on femurs' surface and head's displacements. After verifying the FE linear elastic analyses that mimic the experimental setting for numerical accuracy, we compared the FE results to the experimental observations to identify the influence of material properties on models' predictions. The strains and displacements computed by FE models having MM-based inhomogeneous orthotropic properties match the FE-results having empirically based isotropic properties well, and both are in close agreement with the experimental results. When only the strains in the femoral neck are being compared a more pronounced difference is noticed between the isotropic and orthotropic FE result. These results lay the foundation for applying more realistic inhomogeneous orthotropic material properties in FEA of femurs.  相似文献   

11.
The evolution of biological materials is a critical, yet poorly understood, component in the generation of biodiversity. For example, the diversification of spiders is correlated with evolutionary changes in the way they use silk, and the material properties of these fibers, such as strength, toughness, extensibility, and stiffness, have profound effects on ecological function. Here, we examine the evolution of the material properties of dragline silk across a phylogenetically diverse sample of species in the Araneomorphae (true spiders). The silks we studied are generally stronger than other biological materials and tougher than most biological or man-made fibers, but their material properties are highly variable; for example, strength and toughness vary more than fourfold among the 21 species we investigated. Furthermore, associations between different properties are complex. Some traits, such as strength and extensibility, seem to evolve independently and show no evidence of correlation or trade-off across species, even though trade-offs between these properties are observed within species. Material properties retain different levels of phylogenetic signal, suggesting that traits such as extensibility and toughness may be subject to different types or intensities of selection in several spider lineages. The picture that emerges is complex, with a mosaic pattern of trait evolution producing a diverse set of materials across spider species. These results show that the properties of biological materials are the target of selection, and that these changes can produce evolutionarily and ecologically important diversity.  相似文献   

12.
聚羟基脂肪酸酯(Polyhydroxyalkanoates,简称PHA)是由微生物合成的天然高分子基材料,作为微生物碳源和能源的储备物质。目前,PHA的单体种类有150多种,致使PHA的品种繁多、材料学性质各不相同。PHA具有材料多变性、非线性光学性能、压电性能、气体阻隔性能、热塑性、生物可降解性、良好的生物相容性等特点,使其在塑料包装、化工、医药、农业、生物能源等诸多领域的具有很大的应用前景。文中系统介绍了目前PHA的应用和未来的发展。  相似文献   

13.
In this study, we investigate changes in ecosystem structure that occur over a gradient of land-degradation in the southwestern USA, where shrubs are encroaching into native grassland. We evaluate a conceptual model which posits that the development of biotic and abiotic structural connectivity is due to ecogeomorphic feedbacks. Three hypotheses are evaluated: 1. Over the shrub-encroachment gradient, the difference in soil properties under each surface-cover type will change non-linearly, becoming increasingly different; 2. There will be a reduction in vegetation cover and an increase in vegetation-patch size that is concurrent with an increase in the spatial heterogeneity of soil properties over the shrub-encroachment gradient; and 3. Over the shrub-encroachment gradient, the range at which soil properties are autocorrelated will progressively exceed the range at which vegetation is autocorrelated. Field-based monitoring of vegetation and soil properties was carried out over a shrub-encroachment gradient at the Sevilleta National Wildlife Refuge in New Mexico, USA. Results of this study show that vegetation cover decreases over the shrub-encroachment gradient, but vegetation-patch size increases, with a concurrent increase in the spatial heterogeneity of soil properties. Typically, there are significant differences in soil properties between non-vegetated and vegetated surfaces, but for grass and shrub patches, there are only significant differences for the biotic soil properties. Results suggest that it is the development of larger, well-connected, non-vegetated patches that is most important in driving the overall behavior of shrub-dominated sites. Results of this study support the hypothesis that feedbacks of functional connectivity reinforce the development of structural connectivity, which increases the resilience of the shrub-dominated state, and thus makes it harder for grasses to re-establish and reverse the vegetation change.  相似文献   

14.
Emergent antireductionism in biological sciences states that even though all living cells and organisms are composed of molecules, molecular wholes are characterized by emergent properties that can only be understood from the perspective of cellular and organismal levels of composition. Thus, an emergence claim (molecular wholes are characterized by emergent properties) is thought to support a form of antireductionism (properties of higher-level molecular wholes can only be understood by taking into account concepts, theories and explanations dealing with higher-level entities). I argue that this argument is flawed: even if molecular wholes are characterized by emergent properties and even if many successful explanations in biology are not molecular, there is no entailment between the two claims.  相似文献   

15.
Synapses exhibit diverse functional properties, and it seems likely that these properties are specialized to perform specific computations. The Drosophila antennal lobe provides a useful experimental preparation for exploring the relationship between synaptic physiology and neural computations. This review summarizes recent progress in describing synaptic properties in the Drosophila antennal lobe. These studies reveal that several types of synapses in this circuit are highly specialized, and that these specializations are in some cases under tight regulatory control. These synaptic specializations can be understood in terms of the computational features they confer on the circuit. Specifically, many of these properties appear to promote odor detection when odor concentrations are low, while promoting adaptive gain control when odor concentrations are high.  相似文献   

16.
In this work we propose a method to estimate the elastic properties of the extracellular matrix of articular cartilage, once the elastic properties of the chondrocytes and the whole tissue are known. The influence of the elastic properties of the tissue and the cell concentration on the estimated elastic properties of the matrix are investigated.  相似文献   

17.
Molecular diversity is of vital importance in drug screening in general and for the discovery and development of new pharmacophores in particular. Biochemical screening is a powerful tool for pharmacophore development given understanding of the properties of a good lead compound operating in the biochemical environment. The properties of leadlikeness have evolved to accommodate the artificial conditions of a biochemical assay. Accordingly, the properties of leadlikeness that are suited for screening at protein targets biochemically are different and complementary to the properties of druglikeness used to guide the selection of good compounds studied biologically in cellular studies and animal models. The benefits of leadlikeness in the biochemical screening arena (including fragment-based screening and co-crystallization studies) are described here and recommendations are forwarded for the generation of leadlike molecular diversity. Chemically stable low molecular weight 'minimalist' compounds (or fragments) with dense heteroatom substitution and variable conformational constraint are promoted as conceptually superior compounds for biochemical screening.  相似文献   

18.
Several alternative properties which we define as deterministic or field ones are formulated and analyzed in their relations to the realms of morphogenesis and biophoton emission. In spite of all the differences between these two groups of events both of them share the properties of non-additivity, delocalization, self-focusing and several others which we relate to the field phenomena. To a large extent, the field properties of the biological systems are associated with a set of oscillations of different time periods. We suggest that even such deterministic events as, for example, a ligand-receptor coupling are acting, within an activated cell, as the switches and/or modulators of its field properties.  相似文献   

19.
This paper continues the study of the asymptotic properties of a unified class of biological models which are represented by positive homogeneous operators on ordered Banach spaces. Ergodic properties of these models are analyzed in terms of the spectral properties of the operators.  相似文献   

20.
基因枪法转化小麦谷蛋白基因研究进展   总被引:1,自引:0,他引:1  
小麦面粉品质的优劣主要取决于麦谷蛋白多聚体结构的组成,谷蛋白多聚体由高分子量谷蛋白亚基(HMW-GS)、低分子量谷蛋白亚基(LMW-GS)和醇溶蛋白以二硫键相互交联构成,其数量和结构特征直接影响面团的粘弹性,所以通过基因工程方法转化优质谷蛋白基因,增加谷蛋白数量,改善谷蛋白多聚体结构组成,进而改良面粉品质的研究逐渐引起国内外的重视,并在近年来取得了重要进展。基因枪法是目前利用基因工程改良小麦品质的主要途径,自1992年以来已在多个研究室取得了较为瞩目的成果,显示了基因工程改良小麦品质的可能性及前景。综述了迄今为止国内外利用基因枪法转化谷蛋白基因改良小麦品质的研究进展,并在受体材料的选择等方面的研究现状作了较为详细的阐述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号