首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Casein kinase-2 from rabbit skeletal muscle was found to phosphorylate, in addition to glycogen synthase, troponin from skeletal muscle, and myosin light chain from smooth muscle. Troponin T and the 20,000 Mr myosin light chain are phosphorylated by casein kinase-2 at much greater rates than glycogen synthase. The V values for the phosphorylation of troponin and myosin light chain are nearly an order of magnitude greater than that of glycogen synthase; however, the Km values for these two substrates are greater than that for glycogen synthase. The kinase activities with the various protein substrates are stimulated approximately three- and fivefold by 5 mm spermidine and 3 mm spermine, respectively. Heparin is a potent inhibitor of the kinase when casein, glycogen synthase, or myosin light chain is the substrate. However, with troponin as substrate the kinase is relatively insensitive to inhibition by heparin. The amount of heparin required for 50% inhibition with troponin as substrate is at least 10 times greater than with casein as substrate. The phosphorylation of troponin by casein kinase-2 results in the incorporation of phosphate into two major tryptic peptides, which are different from those phosphorylated by casein kinase-1. The site in myosin light chain phosphorylated by casein kinase-2 is different from that phosphorylated by myosin light chain kinase.  相似文献   

2.
A cyclic nucleotide- and Ca2+-independent protein kinase, initially identified as a glycogen synthase kinase (Itarte, E. and Huang, K.-P. (1979) J. Biol. Chem. 254, 4052–4057), was also found to phosphorylate phosphorylase kinase and troponin from skeletal muscle as well as myosin light chain and myosin light chain kinase from both smooth and skeletal muscles. With the exception of myosin light chain from skeletal muscle, all the above-mentioned proteins are also substrates for the multifunctional cAMP-dependent protein kinase. The results suggest that this cyclic nucleotide- and Ca2+-independent protein kinase, like cAMP-dependent protein kinase, may have multiple cellular functions.  相似文献   

3.
A protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) which catalyzes the phosphorylation of troponin T, phosvitin and casein has been purified over 2000 fold from rabbit skeletal muscle. The partial purification of this new enzyme, designated troponin T kinase, involves precipitation of contaminating proteins at pH 6.1, fractionation of the supernatant with (NH4)2SO4 and successive column chromatographies on DEAE-cellulose, hydroxyapatite and Sepharose 6B. The chromatographic patterns on DEAE-cellulose and hydroxyapatite columns show two peaks of troponin T kinase activity. Gel filtration experiments indicate the existence of multiple, possibly aggregated, forms of the enzyme. The purified enzyme does not catalyze the phosphorylation of phosphorylase b, troponin I, troponin C, tropomyosin, protamine, or myosin light chain 2 nor does it catalyze the interconversion of glycogen synthase I into the D form. Troponin T kinase is not affected by the addition of cyclic nucleotides or AMP to the reaction mixture. Divalent cations (other than Mg2+, required for the reaction) do not stimulate the enzyme, and several are inhibitory. Other characteristics of the reaction catalyzed by troponin T kinase, such as Km values for ATP and substrate proteins, pH optima, effect of the concentration of Mg2+, substitution of ATP for GTP have also been studied.  相似文献   

4.
The MgATP-dependent phosphorylase phosphatase was found to have a broad substrate specificity. Its activity against all phosphoproteins tested was dependent upon preincubation with the activating factor FA and MgATP. The enzyme dephosphorylated and inactivated phosphorylase kinase and inhibitor 1, and dephosphorylated and activated glycogen synthase and acetyl-CoA carboxylase. Glycogen synthase was dephosphorylated at similar rates whether it had been phosphorylated by cyclic-AMP-dependent protein kinase, phosphorylase kinase or glycogen synthase kinase 3. The enzyme also catalysed the dephosphorylation of ATP citrate lyase, initiation factor eIF-2, and troponin I. The properties of the MgATP-dependent protein phosphatase from either dog liver or rabbit skeletal muscle showed a remarkable similarity to highly purified preparations of protein phosphatase 1 from rabbit skeletal muscle. The relative activities of the two enzymes against all phosphoproteins tested was very similar. Both enzymes dephosphorylated the beta-subunit of phosphorylase kinase 40-fold faster than the alpha-subunit, and both enzymes were inhibited by identical concentrations of the two proteins termed inhibitor 1 and inhibitor 2, which inhibit protein phosphatase 1 specifically. These results demonstrate that the MgATP-dependent protein phosphatase is a type-1 protein phosphatase, and is distinct from type-2 protein phosphatases which dephosphorylate the alpha-subunit of phosphorylase kinase and are unaffected by inhibitor 1 and inhibitor 2. The possibility that the MgATP-dependent protein phosphatase is an inactive form of protein phosphatase 1 and that both proteins share the same catalytic subunit is discussed.  相似文献   

5.
Expression of the glycogen-targeting protein PTG promotes glycogen synthase activation and glycogen storage in various cell types. In this study, we tested the contribution of phosphorylase inactivation to the glycogenic action of PTG in hepatocytes by using a selective inhibitor of phosphorylase (CP-91149) that causes dephosphorylation of phosphorylase a and sequential activation of glycogen synthase. Similar to CP-91194, graded expression of PTG caused a concentration-dependent inactivation of phosphorylase and activation of glycogen synthase. The latter was partially counter-acted by the expression of muscle phosphorylase and was not additive with the activation by CP-91149, indicating that it is in part secondary to the inactivation of phosphorylase. PTG expression caused greater stimulation of glycogen synthesis and translocation of glycogen synthase than CP-91149, and the translocation of synthase could not be explained by accumulation of glycogen, supporting an additional role for glycogen synthase translocation in the glycogenic action of PTG. The effects of PTG expression on glycogen synthase and glycogen synthesis were additive with the effects of glucokinase expression, confirming the complementary roles of depletion of phosphorylase a (a negative modulator) and elevated glucose 6-phosphate (a positive modulator) in potentiating the activation of glycogen synthase. PTG expression mimicked the inactivation of phosphorylase caused by high glucose and counteracted the activation caused by glucagon. The latter suggests a possible additional role for PTG on phosphorylase kinase inactivation.  相似文献   

6.
We examined ultrastructure protective phenomena and mechanisms of slow and fast muscles in hibernating Daurian ground squirrels (Spermophilus dauricus). Some degenerative changes such as slightly decreased sarcomere length and vacuolization occurred in hibernation, but periaxonal capsular borders in intrafusal fibers remained distinct and the arrangement of extrafusal fibers and Z-lines unscathed. In soleus samples, the number of glycogenosomes more than tripled during hibernation. The expression of phosphorylated glycogen synthase remained unaltered while that of glycogen phosphorylase decreased during hibernation. The number of extensor digitorum longus glycogenosomes decreased and the expression of phosphorylated glycogen synthase decreased, while glycogen phosphorylase expression remained unaltered. The nuclei number remained unchanged. Kinesin and desmin, preventors of nuclear loss and damage, were maintained or just slightly reduced in hibernation. The single-fiber mitochondrial concentration and sub-sarcolemmal mitochondrial number increased in both muscle types. The expression of vimentin, which anchors mitochondria and maintains Z-line integrity, was increased during and after hibernation. Also, dynamin-related protein 1, mitochondrial fission factor, and adenosine triphosphate synthase were elevated in both muscle types. These findings confirm a remarkable ultrastructure preservation and show an unexpected increase in mitochondrial capacity in hibernating squirrels.  相似文献   

7.
The N-terminal part sequences of pituitary growth hormone, N-acetyl-hGH 7–13 and hGH 6–13, promoted conversion of glycogen synthase b to glycogen synthase a in skeletal muscle and adipose tissue when injected intravenously. The peptides also caused conversion of phosphorylase a to phosphorylase b in liver and adipose tissue, but not in muscle, where the peptides antagonised activation of phosphorylase. Synthase phosphatase activity in muscle and phosphorylase phosphatase activity in liver increased after injection of peptide, with time courses of change similar to those seen for muscle synthase and liver phosphorylase activities. Injection of peptide also decreased both the cyclic AMP dependent and independent synthase kinase activities in muscle. These results show that the insulin-like activities of these peptides on glycogen synthase and phosphorylase involve both increases in protein phosphatase activities and inhibition of protein kinase activities. These results are discussed in relation to the insulin-like activities of growth hormone.  相似文献   

8.
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.  相似文献   

9.
Rabbit skeletal muscle glycogen synthase was phosphorylated by kinase Fa, phosphorylase kinase, and cAMP-independent synthase (casein) kinase-1 to determine the differences among these kinase-catalyzed reactions. The stoichiometry of phosphate incorporation, the extent of inactivation, and the sites of phosphorylation were compared. Synthase (casein) kinase-1 catalyzes the highest level of synthase phosphorylation (4 mol/subunit) and inactivation (reduction of the activity ratio to below 0.05). The sites, defined by characteristic tryptic peptides, phosphorylated by synthase (casein) kinase-1 are distinguishable from those by kinase Fa and phosphorylase kinase. In addition, synthase (casein) kinase-1, unlike kinase Fa, does not activate ATP X Mg2+-dependent protein phosphatase. These results demonstrate that synthase (casein) kinase-1 is a distinct glycogen synthase kinase.  相似文献   

10.

Background

Ischemic stroke is the combinatorial effect of many pathological processes including the loss of energy supplies, excessive intracellular calcium accumulation, oxidative stress, and inflammatory responses. The brain''s ability to maintain energy demand through this process involves metabolism of glycogen, which is critical for release of stored glucose. However, regulation of glycogen metabolism in ischemic stroke remains unknown. In the present study, we investigate the role and regulation of glycogen metabolizing enzymes and their effects on the fate of glycogen during ischemic stroke.

Results

Ischemic stroke was induced in rats by peri-vascular application of the vasoconstrictor endothelin-1 and forebrains were collected at 1, 3, 6 and 24 hours post-stroke. Glycogen levels and the expression and activity of enzymes involved in glycogen metabolism were analyzed. We found elevated glycogen levels in the ipsilateral hemispheres compared with contralateral hemispheres at 6 and 24 hours (25% and 39% increase respectively; P<0.05). Glycogen synthase activity and glycogen branching enzyme expression were found to be similar between the ipsilateral, contralateral, and sham control hemispheres. In contrast, the rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 58% lower activity (P<0.01) in the ipsilateral hemisphere (24 hours post-stroke), which corresponded with a 48% reduction in cAMP-dependent protein kinase A (PKA) activity (P<0.01). In addition, glycogen debranching enzyme expression 24 hours post-stroke was 77% (P<0.01) and 72% lower (P<0.01) at the protein and mRNA level, respectively. In cultured rat primary cerebellar astrocytes, hypoxia and inhibition of PKA activity significantly reduced glycogen phosphorylase activity and increased glycogen accumulation but did not alter glycogen synthase activity. Furthermore, elevated glycogen levels provided metabolic support to astrocytes during hypoxia.

Conclusion

Our study has identified that glycogen breakdown is impaired during ischemic stroke, the molecular basis of which includes reduced glycogen debranching enzyme expression level together with reduced glycogen phosphorylase and PKA activity.  相似文献   

11.
Activation of phosphorylase in intact glycogen particles from skeletal muscle by Ca2+ and MgATP is known as flash activation. By using [gamma-32P]ATP to monitor protein phosphorylation, we have demonstrated that there is, coincident with phosphorylase activation and inactivation, coordinated phosphorylation/dephosphorylation of phosphorylase, glycogen synthase, the beta-subunit of phosphorylase kinase and proteins of Mr = 43,000 and 32,000. Our results show that within the glycogen particle phosphorylase kinase and type-1 protein phosphatase are organized to allow access to a set of protein components. This arrangement may contribute to the reciprocal regulation of their activities.  相似文献   

12.
Proteomic analysis of slow- and fast-twitch skeletal muscles   总被引:5,自引:0,他引:5  
Skeletal muscles are composed of slow- and fast-twitch muscle fibers, which have high potential in aerobic and anaerobic ATP production, respectively. To investigate the molecular basis of the difference in their functions, we examined protein profiles of skeletal muscles using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis with pH 4-7 and 6-11 isoelectric focusing gels. A comparison between rat soleus and extensol digitorum longus (EDL) muscles that are predominantly slow- and fast-twitch fibers, respectively, showed that the EDL muscle had higher levels of glycogen phosphorylase, most glycolytic enzymes, glycerol 3-phosphate dehydrogenase, and creatine kinase; while the soleus muscle had higher levels of myoglobin, TCA cycle enzymes, electron transfer flavoprotein, and carbonic anhydrase III. The two muscles also expressed different isoforms of contractile proteins including myosin heavy and light chains. These protein patterns were further compared with those of red and white gastrochnemius as well as red and white quadriceps muscles. It was found that metabolic enzymes showed a concerted regulation dependent on muscle fiber types. On the other hand, expression of contractile proteins seemed to be independent of the metabolic characteristics of muscle fibers. These results suggest that metabolic enzymes and contractile proteins show different expression patterns in skeletal muscles.  相似文献   

13.
Novel experimental methods, including a modified single fiber in vitro motility assay, X‐ray diffraction experiments, and mass spectrometry analyses, have been performed to unravel the molecular events underlying the aging‐related impairment in human skeletal muscle function at the motor protein level. The effects of old age on the function of specific myosin isoforms extracted from single human muscle fiber segments, demonstrated a significant slowing of motility speed (< 0.001) in old age in both type I and IIa myosin heavy chain (MyHC) isoforms. The force‐generating capacity of the type I and IIa MyHC isoforms was, on the other hand, not affected by old age. Similar effects were also observed when the myosin molecules extracted from muscle fibers were exposed to oxidative stress. X‐ray diffraction experiments did not show any myofilament lattice spacing changes, but unraveled a more disordered filament organization in old age as shown by the greater widths of the 1, 0 equatorial reflections. Mass spectrometry (MS) analyses revealed eight age‐specific myosin post‐translational modifications (PTMs), in which two were located in the motor domain (carbonylation of Pro79 and Asn81) and six in the tail region (carbonylation of Asp900, Asp904, and Arg908; methylation of Glu1166; deamidation of Gln1164 and Asn1168). However, PTMs in the motor domain were only observed in the IIx MyHC isoform, suggesting PTMs in the rod region contributed to the observed disordering of myosin filaments and the slowing of motility speed. Hence, interventions that would specifically target these PTMs are warranted to reverse myosin dysfunction in old age.  相似文献   

14.
Hagfish, the plesiomorphic sister group of all vertebrates, are deep-sea scavengers. The large musculus (m.) longitudinalis linguae (dental muscle) is a specialized element of the feeding apparatus that facilitates the efficient ingestion of food. In this article, we compare the protein expression in hagfish dental and somatic (the m. parietalis) skeletal muscles via two-dimensional gel electrophoresis and mass spectrometry in order to characterize the former muscle. Of the 500 proteins screened, 24 were identified with significant differential expression between these muscles. The proteins that were overexpressed in the dental muscle compared to the somatic muscle were troponin C (TnC), glycogen phosphorylase, β-enolase, fructose-bisphosphate aldolase A (aldolase A), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In contrast, myosin light chain 1 (MLC 1) and creatine kinase (CK) were over-expressed in the somatic muscle relative to the dental muscle. These results suggest that these two muscles have different energy sources and contractile properties and provide an initial representative map for comparative studies of muscle-protein expression in low craniates.  相似文献   

15.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

16.
Duchenne Muscular Dystrophy (DMD) is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM) decreased [Ca2+]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca2+]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB) fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca2+]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91phox/p47phox NOX2 subunits) and pro-apoptotic (Bax) genes in mdx diaphragm muscles and lowered serum creatine kinase (CK) levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca2+]r in mdx skeletal muscle cells. The results in this work open new perspectives towards possible targets for pharmacological approaches to treat DMD.  相似文献   

17.
Activities of glycogen synthase (total) and branching enzyme in slow (soleus) muscle are higher than those in fast (vastus lateralis) muscle, while those of phosphorylase kinase (total), phosphorylase (total) and debranching enzyme are reversed. The active form ratio of glycogen synthase is higher in fast muscle, while those of phosphorylase kinase and phosphorylase are higher in slow muscle. Activities of cAMP-dependent protein kinase and protein phosphatase in slow muscle are higher than those in fast muscle. These results suggest that glycogen metabolizing enzymes in slow muscle, distinct from those in fast muscle, are regulated more strongly by cAMP-dependent protein kinase rather than by protein phosphatase.  相似文献   

18.
A glycogen synthase kinase that is completely dependent on Ca2+ and calmodulin has been identified in mammalian skeletal muscle, and purified approximately 3000-fold by chromatography on phosphocellulose and calmodulin--Sepharose. The presence of 50 mM NaCl in the homogenisation buffer was critical for extraction of the enzyme. The calmodulin-dependent glycogen synthase kinase (app. Mr 850 000) is distinct from myosin light-chain kinase and phosphorylase kinase, but phosphorylates the same serine residue on glycogen synthase as phosphorylase kinase. The physiological role of the enzyme is discussed.  相似文献   

19.
The calcium-dependent inactivation of glycogen synthase in an isolated glycogen-protein complex (glycogen pellet) from rabbit skeletal muscle has been investigated. Addition of 1 mm Ca2+, 10 mm Mg2+, and 1 mm ATP-γ-S to a concentrated suspension of glycogen pellet resulted in a rapid activation of glycogen phosphorylase concomitant with an inactivation of glycogen synthase. These conversion reactions were blocked by ethylene glycol bis(β-aminoethyl ether) N, N′-tetraacetic acid or by pretreatment of the complex with an antiserum to purified phosphorylase kinase. These data suggest that in the glycogen-protein complex, which may be a functional unit of glycogen metabolism in vivo, phosphorylase kinase can catalyze a Ca2+-dependent activation of glycogen phosphorylase synchronized with an inactivation of glycogen synthase. If under similar conditions phosphoprotein phosphatase activity was assayed using exogenous [32P]phosphorylase, there was an apparent inactivation of the phosphatase. Evidence is presented that this apparent inactivation of phosphatase was due to an accumulation of endogenous phosphorylase a which acted as an inhibitor to the exogenous [32P]-phosphorylase.  相似文献   

20.
《Cellular signalling》2014,26(9):1837-1845
Loss of skeletal muscle oxidative fiber types and mitochondrial capacity is a hallmark of chronic obstructive pulmonary disease and chronic heart failure. Based on in vivo human and animal studies, tissue hypoxia has been hypothesized as determinant, but the direct effect of hypoxia on muscle oxidative phenotype remains to be established. Hence, we determined the effect of hypoxia on in vitro cultured muscle cells, including gene and protein expression levels of mitochondrial components, myosin isoforms (reflecting slow-oxidative versus fast-glycolytic fibers), and the involvement of the regulatory PPAR/PGC-1α pathway. We found that hypoxia inhibits the PPAR/PGC-1α pathway and the expression of mitochondrial components through HIF-1α. However, in contrast to our hypothesis, hypoxia stimulated the expression of slow-oxidative type I myosin via HIF-1α. Collectively, this study shows that hypoxia differentially regulates contractile and metabolic components of muscle oxidative phenotype in a HIF-1α-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号