首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioinspiration is a promising lens for biology instruction as it allows the instructor to focus on current issues, such as the COVID‐19 pandemic. From social distancing to oxygen stress, organisms have been tackling pandemic‐related problems for millions of years. What can we learn from such diverse adaptations in our own applications? This review uses a seminar course on the COVID‐19 crisis to illustrate bioinspiration as an approach to teaching biology content. At the start of the class, students mind‐mapped the entire problem; this range of subproblems was used to structure the biology content throughout the entire class. Students came to individual classes with a brainstormed list of biological systems that could serve as inspiration for a particular problem (e.g., absorptive leaves in response to the problem of toilet paper shortages). After exploration of relevant biology content, discussion returned to the focal problem. Students dug deeper into the literature in a group project on mask design and biological systems relevant to filtration and transparency. This class structure was an engaging way for students to learn principles from ecology, evolution, behavior, and physiology. Challenges with this course design revolved around the interdisciplinary and creative nature of the structure; for instance, the knowledge of the participants was often stretched by engineering details. While the present class was focused on the COVID‐19 crisis, a course structured through a bioinspired approach can be applied to other focal problems, or subject areas, giving instructors a powerful method to deliver interdisciplinary content in an integrated and inquiry‐driven way.  相似文献   

2.
Coronavirus disease 2019 (COVID‐19) is especially severe in aged patients, defined as 65 years or older, for reasons that are currently unknown. To investigate the underlying basis for this vulnerability, we performed multimodal data analyses on immunity, inflammation, and COVID‐19 incidence and severity as a function of age. Our analysis leveraged age‐specific COVID‐19 mortality and laboratory testing from a large COVID‐19 registry, along with epidemiological data of ~3.4 million individuals, large‐scale deep immune cell profiling data, and single‐cell RNA‐sequencing data from aged COVID‐19 patients across diverse populations. We found that decreased lymphocyte count and elevated inflammatory markers (C‐reactive protein, D‐dimer, and neutrophil–lymphocyte ratio) are significantly associated with age‐specific COVID‐19 severities. We identified the reduced abundance of naïve CD8 T cells with decreased expression of antiviral defense genes (i.e., IFITM3 and TRIM22) in aged severe COVID‐19 patients. Older individuals with severe COVID‐19 displayed type I and II interferon deficiencies, which is correlated with SARS‐CoV‐2 viral load. Elevated expression of SARS‐CoV‐2 entry factors and reduced expression of antiviral defense genes (LY6E and IFNAR1) in the secretory cells are associated with critical COVID‐19 in aged individuals. Mechanistically, we identified strong TGF‐beta‐mediated immune–epithelial cell interactions (i.e., secretory‐non‐resident macrophages) in aged individuals with critical COVID‐19. Taken together, our findings point to immuno‐inflammatory factors that could be targeted therapeutically to reduce morbidity and mortality in aged COVID‐19 patients.  相似文献   

3.
Based on the recent reports, cardiovascular events encompass a large portion of the mortality caused by the COVID‐19 pandemic, which drawn cardiologists into the management of the admitted ill patients. Given that common laboratory values may provide key insights into the illness caused by the life‐threatening SARS‐CoV‐2 virus, it would be more helpful for screening, clinical management and on‐time therapeutic strategies. Commensurate with these issues, this review article aimed to discuss the dynamic changes of the common laboratory parameters during COVID‐19 and their association with cardiovascular diseases. Besides, the values that changed in the early stage of the disease were considered and monitored during the recovery process. The time required for returning biomarkers to basal levels was also discussed. Finally, of particular interest, we tended to abridge the latest updates regarding the cardiovascular biomarkers as prognostic and diagnostic criteria to determine the severity of COVID‐19.  相似文献   

4.
Practical teaching can give authentic learning experiences and teach valuable skills for undergraduate students in the STEM disciplines. One of the main ways of giving students such experiences, laboratory teaching, is met with many challenges such as budget cuts, increased use of virtual learning, and currently the university lockdowns due to the COVID‐19 pandemic. We highlight how at‐home do‐it‐yourself (DIY) experiments can be a good way to include physical interaction with your study organism, system, or technique to give the students a practical, authentic learning experience. We hope that by outlining the benefits of a practical, at‐home, DIY experiment we can inspire more people to design these teaching activities in the current remote teaching situation and beyond. By contributing two examples in the field of plant biology we enrich the database on experiments to draw inspiration from for these teaching methods.  相似文献   

5.
6.
The COVID‐19 pandemic prompted a transition to remote delivery of courses that lack immersive hands‐on research experiences for undergraduate science students, resulting in a scientific research skills gap. In this report, we present an option for an inclusive and authentic, hands‐on research experience that all students can perform off‐campus. Biology students in a semester‐long (13 weeks) sophomore plant physiology course participated in an at‐home laboratory designed to study the impacts of nitrogen addition on growth rates and root nodulation by wild nitrogen‐fixing Rhizobia in Pisum sativum (Pea) plants. This undergraduate research experience, piloted in the fall semester of 2020 in a class with 90 students, was created to help participants learn and practice scientific research skills during the COVID‐19 pandemic. Specifically, the learning outcomes associated with this at‐home research experience were: (1) generate a testable hypothesis, (2) design an experiment to test the hypothesis, (3) explain the importance of biological replication, (4) perform meaningful statistical analyses using R, and (5) compose a research paper to effectively communicate findings to a general biology audience. Students were provided with an at‐home laboratory kit containing the required materials and reagents, which were chosen to be accessible and affordable in case students were unable to access our laboratory kit. Students were guided through all aspects of research, including hypothesis generation, data collection, and data analysis, with video tutorials and live virtual sessions. This at‐home laboratory provided students an opportunity to practice hands‐on research with the flexibility to collect and analyze their own data in a remote setting during the COVID‐19 pandemic. This, or similar laboratories, could also be used as part of distance learning biology courses.  相似文献   

7.
The COVID‐19 pandemic caused by SARS‐CoV‐2 has applied significant pressure on overtaxed healthcare around the world, underscoring the urgent need for rapid diagnosis and treatment. We have developed a bacterial strategy for the expression and purification of a SARS‐CoV‐2 spike protein receptor binding domain (RBD) that includes the SD1 domain. Bacterial cytoplasm is a reductive environment, which is problematic when the recombinant protein of interest requires complicated folding and/or processing. The use of the CyDisCo system (cytoplasmic disulfide bond formation in E. coli) bypasses this issue by pre‐expressing a sulfhydryl oxidase and a disulfide isomerase, allowing the recombinant protein to be correctly folded with disulfide bonds for protein integrity and functionality. We show that it is possible to quickly and inexpensively produce an active RBD in bacteria that is capable of recognizing and binding to the ACE2 (angiotensin‐converting enzyme) receptor as well as antibodies in COVID‐19 patient sera.  相似文献   

8.
9.
Infection with the novel severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) and the associated coronavirus disease‐19 (COVID‐19) might affect red blood cells (RBC); possibly altering oxygen supply. However, investigations of cell morphology and RBC rheological parameters during a mild disease course are lacking and thus, the aim of the study. Fifty individuals with mild COVID‐19 disease process were tested after the acute phase of SARS‐CoV‐2 infection (37males/13 females), and the data were compared to n = 42 healthy controls (30 males/12 females). Analysis of venous blood samples, taken at rest, revealed a higher percentage of permanently elongated RBC and membrane extensions in COVID‐19 patients. Haematological parameters and haemoglobin concentration, MCH and MCV in particular, were highly altered in COVID‐19. RBC deformability and deformability under an osmotic gradient were significantly reduced in COVID‐19 patients. Higher RBC‐NOS activation was not capable to at least in part counteract these reductions. Impaired RBC deformability might also be related to morphological changes and/or increased oxidative state. RBC aggregation index remained unaffected. However, higher shear rates were necessary to balance the aggregation‐disaggregation in COVID‐19 patients which might be, among others, related to morphological changes. The data suggest prolonged modifications of the RBC system even during a mild COVID‐19 disease course.  相似文献   

10.
In light of the COVID‐19 pandemic, there is an ongoing need for diagnostic tools to monitor the immune status of large patient cohorts and the effectiveness of vaccination campaigns. Here, we present 11 unique nanobodies (Nbs) specific for the SARS‐CoV‐2 spike receptor‐binding domain (RBD), of which 8 Nbs potently inhibit the interaction of RBD with angiotensin‐converting enzyme 2 (ACE2) as the major viral docking site. Following detailed epitope mapping and structural analysis, we select two inhibitory Nbs, one of which binds an epitope inside and one of which binds an epitope outside the RBD:ACE2 interface. Based on these, we generate a biparatopic nanobody (bipNb) with viral neutralization efficacy in the picomolar range. Using bipNb as a surrogate, we establish a competitive multiplex binding assay (“NeutrobodyPlex”) for detailed analysis of the presence and performance of neutralizing RBD‐binding antibodies in serum of convalescent or vaccinated patients. We demonstrate that NeutrobodyPlex enables high‐throughput screening and detailed analysis of neutralizing immune responses in infected or vaccinated individuals, to monitor immune status or to guide vaccine design.  相似文献   

11.
Inquiry‐based learning allows students to actively engage in and appreciate the process of science. As college courses transition to online instruction in response to COVID‐19, incorporating inquiry‐based learning is all the more essential for student engagement. However, with the cancelation of in‐person laboratory courses, implementing inquiry can prove challenging for instructors. Here, I describe a case that exemplifies a strategy for inquiry‐based learning and can be adapted for use in various course modalities, from traditional face‐to‐face laboratory courses to asynchronous and synchronous online courses. I detail an assignment where students explore the developmental basis of morphological evolution. Flowers offer an excellent example to address this concept and are easy for students to access and describe. Students research local flowering plants, collect and dissect flower specimens to determine their whorl patterns, and generate hypotheses to explain the developmental genetic basis of the patterns identified. This task allows students to apply their scientific thinking skills, conduct guided exploration in nature, and connect their understanding of the developmental basis of evolutionary change to everyday life. Incorporating inquiry using readily available, tangible, tractable real‐world examples represents a pragmatic and effective model that can be applied in a variety of disciplines during and beyond COVID‐19.  相似文献   

12.
SARS‐CoV‐2 infection hijacks signaling pathways and induces protein–protein interactions between human and viral proteins. Human genetic variation may impact SARS‐CoV‐2 infection and COVID‐19 pathology; however, the genetic variation in these signaling networks remains uncharacterized. Here, we studied human missense single nucleotide variants (SNVs) altering phosphorylation sites modulated by SARS‐CoV‐2 infection, using machine learning to identify amino acid substitutions altering kinase‐bound sequence motifs. We found 2,033 infrequent phosphorylation‐associated SNVs (pSNVs) that are enriched in sequence motif alterations, potentially reflecting the evolution of signaling networks regulating host defenses. Proteins with pSNVs are involved in viral life cycle and host responses, including RNA splicing, interferon response (TRIM28), and glucose homeostasis (TBC1D4) with potential associations with COVID‐19 comorbidities. pSNVs disrupt CDK and MAPK substrate motifs and replace these with motifs of Tank Binding Kinase 1 (TBK1) involved in innate immune responses, indicating consistent rewiring of signaling networks. Several pSNVs associate with severe COVID‐19 and hospitalization (STARD13, ARFGEF2). Our analysis highlights potential genetic factors contributing to inter‐individual variation of SARS‐CoV‐2 infection and COVID‐19 and suggests leads for mechanistic and translational studies.Subject Categories: Computational Biology, Microbiology, Virology & Host Pathogen Interaction, Post-translational Modifications & Proteolysis

An integrative proteogenomic study reveals that human phospho‐signaling networks responding to SARS‐CoV‐2 infection are enriched in genetic variants that modify kinase binding motifs, suggesting that genetic variation may impact infection and COVID‐19 pathology.  相似文献   

13.
As the number of confirmed cases and resulting death toll of the COVID‐19 pandemic continue to increase around the globe ‐ especially with the emergence of new mutations of the SARS‐CoV‐2 virus in addition to the known alpha, beta, gamma, delta and omicron variants ‐ tremendous efforts continue to be dedicated to the development of interventive therapeutics to mitigate infective symptoms or post‐viral sequelae in individuals for which vaccines are not accessible, viable or effective in the prevention of illness. Many of these investigations aim to target the associated acute respiratory distress syndrome, or ARDS, which induces damage to lung epithelia and other physiologic systems and is associated with progression in severe cases. Recently, stem cell‐based therapies have demonstrated preliminary efficacy against ARDS based on a number of preclinical and preliminary human safety studies, and based on promising outcomes are now being evaluated in phase II clinical trials for ARDS. A number of candidate stem cell therapies have been found to exhibit low immunogenicity, coupled with inherent tropism to injury sites. In recent studies, these have demonstrated the ability to modulate suppression of pro‐inflammatory cytokine signals such as those characterizing COVID‐19‐associated ARDS. Present translational studies are aiming to optimize the safety, efficacy and delivery to fully validate stem cell‐based strategies targeting COVID‐19 associated ARDS for viable clinical application.  相似文献   

14.
15.
The severe‐acute‐respiratory‐syndrome‐coronavirus‐2 (SARS‐CoV‐2) is the causative agent of COVID‐19, but host cell factors contributing to COVID‐19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS‐CoV‐2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID‐19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS‐CoV‐2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease‐targeted inhibitors severely impair lung cell infection by the SARS‐CoV‐2 variants of concern alpha, beta, delta, and omicron and also reduce SARS‐CoV‐2 infection of primary human lung cells in a TMPRSS2 protease‐independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.  相似文献   

16.
SARS‐CoV‐2 infection results in impaired interferon response in patients with severe COVID‐19. However, how SARS‐CoV‐2 interferes with host immune responses is incompletely understood. Here, we sequence small RNAs from SARS‐CoV‐2‐infected human cells and identify a microRNA (miRNA) derived from a recently evolved region of the viral genome. We show that the virus‐derived miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer, which are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3′UTR of interferon‐stimulated genes and represses their expression in a miRNA‐like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID‐19 patients. We propose that SARS‐CoV‐2 can potentially employ a virus‐derived miRNA to hijack the host miRNA machinery, which could help to evade the interferon‐mediated immune response.  相似文献   

17.
ObjectivesRecent studies have shown the presence of SARS‐CoV‐2 in the tissues of clinically recovered patients and persistent immune symptoms in discharged patients for up to several months. Pregnant patients were shown to be a high‐risk group for COVID‐19. Based on these findings, we assessed SARS‐CoV‐2 nucleic acid and protein retention in the placentas of pregnant women who had fully recovered from COVID‐19 and cytokine fluctuations in maternal and foetal tissues.Materials and MethodsRemnant SARS‐CoV‐2 in the term placenta was detected using nucleic acid amplification and immunohistochemical staining of the SARS‐CoV‐2 protein. The infiltration of CD14+ macrophages into the placental villi was detected by immunostaining. The cytokines in the placenta, maternal plasma, neonatal umbilical cord, cord blood and amniotic fluid specimens at delivery were profiled using the Luminex assay.ResultsResidual SARS‐CoV‐2 nucleic acid and protein were detected in the term placentas of recovered pregnant women. The infiltration of CD14+ macrophages into the placental villi of the recovered pregnant women was higher than that in the controls. Furthermore, the cytokine levels in the placenta, maternal plasma, neonatal umbilical cord, cord blood and amniotic fluid specimens fluctuated significantly.ConclusionsOur study showed that SARS‐CoV‐2 nucleic acid (in one patient) and protein (in five patients) were present in the placentas of clinically recovered pregnant patients for more than 3 months after diagnosis. The immune responses induced by the virus may lead to prolonged and persistent symptoms in the maternal plasma, placenta, umbilical cord, cord blood and amniotic fluid.  相似文献   

18.
Undergraduate research experiences have been shown to increase engagement, improve learning outcomes, and enhance career development for students in ecology. However, these opportunities may not be accessible to all students, and incorporating inquiry‐based research directly into undergraduate curricula may help overcome barriers to participation and improve representation and inclusion in the discipline. The shift to online instruction during the COVID‐19 pandemic has imposed even greater challenges for providing students with authentic research experiences, but the pandemic may also provide a unique opportunity for creative projects conducted remotely. In this paper, I describe a course‐based undergraduate research experience (CURE) designed for an upper‐level ecology course at California State University, Dominguez Hills during remote learning. The primary focus of student‐led research activities was to explore the potential impacts of the depopulation of campus during the pandemic on urban coyotes (Canis latrans), for which there were increased sightings reported during this time. Students conducted two research studies, including an evaluation of urban wildlife activity, behavior, and diversity using camera traps installed throughout campus and analysis of coyote diet using data from scat dissections. Students used the data they generated and information from literature reviews, class discussions, and meetings with experts to develop a coyote monitoring and management plan for our campus and create posters to educate the public. Using the campus as a living laboratory, I aimed to engage students in meaningful research while cultivating a sense of place, despite being online. Students’ research outcomes and responses to pre‐ and post‐course surveys highlight the benefits of projects that are anchored in place‐based education and emphasize the importance of ecological research for solving real‐world problems. CUREs focused on local urban ecosystems may be a powerful way for instructors to activate ecological knowledge and capitalize on the cultural strengths of students at urban universities.  相似文献   

19.
Although 15–20% of COVID‐19 patients experience hyper‐inflammation induced by massive cytokine production, cellular triggers of this process and strategies to target them remain poorly understood. Here, we show that the N‐terminal domain (NTD) of the SARS‐CoV‐2 spike protein substantially induces multiple inflammatory molecules in myeloid cells and human PBMCs. Using a combination of phenotypic screening with machine learning‐based modeling, we identified and experimentally validated several protein kinases, including JAK1, EPHA7, IRAK1, MAPK12, and MAP3K8, as essential downstream mediators of NTD‐induced cytokine production, implicating the role of multiple signaling pathways in cytokine release. Further, we found several FDA‐approved drugs, including ponatinib, and cobimetinib as potent inhibitors of the NTD‐mediated cytokine release. Treatment with ponatinib outperforms other drugs, including dexamethasone and baricitinib, inhibiting all cytokines in response to the NTD from SARS‐CoV‐2 and emerging variants. Finally, ponatinib treatment inhibits lipopolysaccharide‐mediated cytokine release in myeloid cells in vitro and lung inflammation mouse model. Together, we propose that agents targeting multiple kinases required for SARS‐CoV‐2‐mediated cytokine release, such as ponatinib, may represent an attractive therapeutic option for treating moderate to severe COVID‐19.  相似文献   

20.
Although numerous patient‐specific co‐factors have been shown to be associated with worse outcomes in COVID‐19, the prognostic value of thalassaemic syndromes in COVID‐19 patients remains poorly understood. We studied the outcomes of 137 COVID‐19 patients with a history of transfusion‐dependent thalassaemia (TDT) and transfusion independent thalassaemia (TIT) extracted from a large international cohort and compared them with the outcomes from a matched cohort of COVID‐19 patients with no history of thalassaemia. The mean age of thalassaemia patients included in our study was 41 ± 16 years (48.9% male). Almost 81% of these patients suffered from TDT requiring blood transfusions on a regular basis. 38.7% of patients were blood group O. Cardiac iron overload was documented in 6.8% of study patients, whereas liver iron overload was documented in 35% of study patients. 40% of thalassaemia patients had a history of splenectomy. 27.7% of study patients required hospitalization due to COVID‐19 infection. Amongst the hospitalized patients, one patient died (0.7%) and one patient required intubation. Continuous positive airway pressure (CPAP) was required in almost 5% of study patients. After adjustment for age‐, sex‐ and other known risk factors (cardiac disease, kidney disease and pulmonary disease), the rate of in‐hospital complications (supplemental oxygen use, admission to an intensive care unit for CPAP therapy or intubation) and all‐cause mortality was significantly lower in the thalassaemia group compared to the matched cohort with no history of thalassaemia. Amongst thalassaemia patients in general, the TIT group exhibited a higher rate of hospitalization compared to the TDT group (p = 0.001). In addition, the rate of complications such as acute kidney injury and need for supplemental oxygen was significantly higher in the TIT group compared to the TDT group. In the multivariable logistic regression analysis, age and history of heart or kidney disease were all found to be independent risk factors for increased in‐hospital, all‐cause mortality, whereas the presence of thalassaemia (either TDT or TIT) was found to be independently associated with reduced all‐cause mortality. The presence of thalassaemia in COVID‐19 patients was independently associated with lower in‐hospital, all‐cause mortality and few in‐hospital complications in our study. The pathophysiology of this is unclear and needs to be studied in vitro and in animal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号