首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinamide N-methyltransferase (NNMT) has been linked to obesity and diabetes. We have identified a novel nicotinamide (NA) analog, compound 12 that inhibited NNMT enzymatic activity and reduced the formation of 1-methyl-nicotinamide (MNA), the primary metabolite of NA by ~80% at 2?h when dosed in mice orally at 50?mg/kg.  相似文献   

2.
Starting from 4-amino-8-quinoline carboxamide lead 1a and scaffold hopping to the chemically more tractable quinazoline, a systematic exploration of the 2-substituents of the quinazoline ring, utilizing structure activity relationships and conformational constraint, resulted in the identification of 39 novel CD38 inhibitors. Eight of these analogs were 10–100-fold more potent human CD38 inhibitors, including the single digit nanomolar inhibitor 1am. Several of these molecules also exhibited improved therapeutic indices relative to hERG activity. A representative analog 1r exhibited suitable pharmacokinetic parameters for in vivo animal studies, including moderate clearance and good oral bioavailability. These inhibitor compounds will aid in the exploration of the enzymatic functions of CD38, as well as furthering the study of the therapeutic implications of NAD enhancement in metabolic disease models.  相似文献   

3.
Hydrostatic pressure causes biphasic effects on the oxidation of alcohols by yeast alcohol dehydrogenase as expressed on the kinetic parameter V/K which measures substrate capture. Moderate pressure increases capture by activating hydride transfer, whose transition-state must therefore have a smaller volume than the free alcohol plus the capturing form of enzyme, with DeltaV(double dagger)=-30 mL mol(-1) for isopropanol. A comparison of these effects with those on the oxidation of deutero-isopropanol generates a monophasic decrease in the intrinsic isotope effect; therefore, the volume of activation for the transition-state of deuteride transfer must be even more negative, by 7.6 mL mol(-1). The pressure data extrapolate and factor the kinetic isotope effect into a semi-classical reactant-state component, with a null value of k(H)/k(D)=1, and a transition-state component of Q(H)/Q(D)=4, suggestive of hydrogen tunneling. Pressures above 1.5 kbar decrease capture by favoring a minor conformation of enzyme which binds nicotinamide adenine dinucleotide (NAD(+)) less tightly. This inactive conformation has a smaller volume than active E-NAD(+), with a difference of 74 mL mol(-1) and an equilibrium constant of 93 between them, at one atmosphere of pressure. These results are virtually identical to those obtained with benzyl alcohol and give credence to this method of analysis. Moreover, qualitatively similar results with greater pressure sensitivity but less precision are obtained using ethanol as a substrate, only with pressure driving the value of the isotope effect to a value less than (D)k=1.03 directly, without extrapolation. The ethanol data verify the most surprising finding of these studies, namely that the entire kinetic isotope effect arises from a transition-state phenomenon.  相似文献   

4.
Terrestrial plant pollen is classified into two categories based on its metabolic status: pollen with low-metabolism are termed “orthodox” and pollen with high-metabolism are termed “recalcitrant.” Nicotinamide adenine dinucleotide (NAD) is crucial for a number of metabolisms in all extant organisms. It has recently been shown that NAD homeostasis plays an important role in a broad range of developmental processes and responses to environment. Recently, a reverse genetic approach shed light on the significance of NAD biosynthesis on pollen fate. In orthodox Arabidopsis pollen, NAD+ that was accumulated in excess at dispersal dramatically decreased on rehydration. The lack of a key gene that is involved in NAD biosynthesis compromised the excess accumulation. Moreover, absence of the excess accumulation phenocopied the so-called recalcitrant pollen, as demonstrated by the germination inside anthers and the loss of desiccation tolerance. Upon rehydration, NAD+-consuming inhibitors impaired tube germination. Taken together, our results suggest that accumulation of NAD+ functions as a physiochemical molecular switch for suspended metabolism and that the decrease of NAD+ plays a very important role during transitions in metabolic states. Shifting of the redox state to an oxidizing environment may efficiently control the comprehensive metabolic network underlying the onset of pollen germination.  相似文献   

5.
Extracellular polysaccharides produced by 3 strains of Pullularia pullulans were fractionated by treating with cetyl trimethyl ammonium hydroxide into soluble and insoluble fractions, and the structure of the former fraction, i.e., pullulan, was studied. The yield and the ratio of 2 fractions varied widely according to the strains. But the structure of pullulan was found to be uniform irrespective of the strains used. All 3 samples of pullulan gave only glucose on complete acid hydrolysis, and 93~95% maltotriose and 5~7% maltotetraose after isoamylase (pullulanase) action. The ratio of α-1,4- to α-1,6-glucosidic linkages calculated from periodate oxidation data coincided very well with the value expected from the ratio of maltotriose to maltotetraose units. An evidence for the complete absence of branch structure in pullulan was presented from the results of hydrolysis by pullulan 4-glucanohydrolase.  相似文献   

6.
Nicotinamide phosphoribosyltransferase (NAMPT) has been extensively studied due to its essential role in NAD+ biosynthesis in cancer cells and the prospect of developing novel therapeutics. To understand how NAMPT regulates cellular metabolism, we have shown that the treatment with FK866, a specific NAMPT inhibitor, leads to attenuation of glycolysis by blocking the glyceraldehyde 3-phosphate dehydrogenase step (Tan, B., Young, D. A., Lu, Z. H., Wang, T., Meier, T. I., Shepard, R. L., Roth, K., Zhai, Y., Huss, K., Kuo, M. S., Gillig, J., Parthasarathy, S., Burkholder, T. P., Smith, M. C., Geeganage, S., and Zhao, G. (2013) Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. J. Biol. Chem. 288, 3500–3511). Due to technical limitations, we failed to separate isotopomers of phosphorylated sugars. In this study, we developed an enabling LC-MS methodology. Using this, we confirmed the previous findings and also showed that NAMPT inhibition led to accumulation of fructose 1-phosphate and sedoheptulose 1-phosphate but not glucose 6-phosphate, fructose 6-phosphate, and sedoheptulose 7-phosphate as previously thought. To investigate the metabolic basis of the metabolite formation, we carried out biochemical and cellular studies and established the following. First, glucose-labeling studies indicated that fructose 1-phosphate was derived from dihydroxyacetone phosphate and glyceraldehyde, and sedoheptulose 1-phosphate was derived from dihydroxyacetone phosphate and erythrose via an aldolase reaction. Second, biochemical studies showed that aldolase indeed catalyzed these reactions. Third, glyceraldehyde- and erythrose-labeling studies showed increased incorporation of corresponding labels into fructose 1-phosphate and sedoheptulose 1-phosphate in FK866-treated cells. Fourth, NAMPT inhibition led to increased glyceraldehyde and erythrose levels in the cell. Finally, glucose-labeling studies showed accumulated fructose 1,6-bisphosphate in FK866-treated cells mainly derived from dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Taken together, this study shows that NAMPT inhibition leads to attenuation of glycolysis, resulting in further perturbation of carbohydrate metabolism in cancer cells. The potential clinical implications of these findings are also discussed.  相似文献   

7.
    
An in vivo system was developed for the biotransformation of D-fructose into D-mannitol by the expression of the gene mdh encoding mannitol dehydrogenase (MDH) from Leuconostoc pseudomesenteroides ATCC12291 in Bacillus megaterium. The NADH reduction equivalents necessary for MDH activity were regenerated via the oxidation of formate to carbon dioxide by coexpression of the gene fdh encoding Mycobacterium vaccae N10 formate dehydrogenase (FDH). High-level protein production of MDH in B. megaterium required the adaptation of the corresponding ribosome binding site. The fdh gene was adapted to B. megaterium codon usage via complete chemical gene synthesis. Recombinant B. megaterium produced up to 10.60 g/L D-mannitol at the shaking flask scale. Whole cell biotransformation in a fed-batch bioreactor increased D-mannitol concentration to 22.00 g/L at a specific productivity of 0.32 g D-mannitol (gram cell dry weight)(-1) h(-1) and a D-mannitol yield of 0.91 mol/mol. The nicotinamide adenine dinucleotide (NAD(H)) pool of the B. megaterium producing D-mannitol remained stable during biotransformation. Intra- and extracellular pH adjusted itself to a value of 6.5 and remained constant during the process. Data integration revealed that substrate uptake was the limiting factor of the overall biotransformation. The information obtained identified B. megaterium as a useful production host for D-mannitol using a resting cell biotransformation approach.  相似文献   

8.
The activation of poly(ADP-ribose) polymerase, a DNA base excision repair enzyme, is indicative of DNA damage. This enzyme also undergoes site-specific proteolysis during apoptosis. Because both DNA fragmentation and apoptosis are known to occur following experimental brain injury, we investigated the effect of lateral fluid percussion brain injury on poly(ADP-ribose) polymerase activity and cleavage. Male Sprague-Dawley rats (n = 52) were anesthetized, subjected to fluid percussion brain injury of moderate severity (2.5-2.8 atm), and killed at 30 min, 2 h, 6 h, 24 h, 3 days, or 7 days postinjury. Genomic DNA from injured cortex at 24 h, but not at 30 min, was both fragmented and able to stimulate exogenous poly(ADP-ribose) polymerase. Endogenous poly(ADP-ribose) polymerase activity, however, was enhanced in the injured cortex at 30 min but subsequently returned to baseline levels. Slight fragmentation of poly(ADP-ribose) polymerase was detected in the injured cortex in the first 3 days following injury, but significant cleavage was detected at 7 days postinjury. Taken together, these data suggest that poly(ADP-ribose) polymerase-mediated DNA repair is initiated in the acute posttraumatic period but that subsequent poly(ADP-ribose) polymerase activation does not occur, possibly owing to delayed apoptosis-associated proteolysis, which may impair the repair of damaged DNA.  相似文献   

9.
    
Nicotinamide riboside (NR) is an effective precursor of nicotinamide adenine dinucleotide (NAD) in human and animal cells. NR supplementation can increase the level of NAD in various tissues and thereby improve physiological functions that are weakened or lost in experimental models of aging or various human pathologies. However, there are also reports questioning the efficacy of NR supplementation. Indeed, the mechanisms of its utilization by cells are not fully understood. Herein, we investigated the role of purine nucleoside phosphorylase (PNP) in NR metabolism in mammalian cells. Using both PNP overexpression and genetic knockout, we show that after being imported into cells by members of the equilibrative nucleoside transporter family, NR is predominantly metabolized by PNP, resulting in nicotinamide (Nam) accumulation. Intracellular cleavage of NR to Nam is prevented by the potent PNP inhibitor Immucillin H in various types of mammalian cells. In turn, suppression of PNP activity potentiates NAD synthesis from NR. Combining pharmacological inhibition of PNP with NR supplementation in mice, we demonstrate that the cleavage of the riboside to Nam is strongly diminished, maintaining high levels of NR in blood, kidney, and liver. Moreover, we show that PNP inhibition stimulates Nam mononucleotide and NAD+ synthesis from NR in vivo, in particular, in the kidney. Thus, we establish PNP as a major regulator of NR metabolism in mammals and provide evidence that the health benefits of NR supplementation could be greatly enhanced by concomitant downregulation of PNP activity.  相似文献   

10.
烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD+)作为氧化还原反应的重要辅酶,是能量代谢的核心。NAD+也是非氧化还原NAD+依赖性酶的共底物,包括沉默信息调节因子(Sirtuins)、聚ADP-核糖聚合酶(poly ADP-ribose polymerases, PARPs)、CD38/CD157胞外酶等。NAD+已成为细胞信号转导和细胞存活的关键调节剂。最近的研究表明,Sirtuins催化多种NAD+依赖性反应,包括去乙酰化、脱酰基化和ADP-核糖基化。Sirtuins催化活性取决于NAD+水平的高低。因此,Sirtuins是细胞代谢和氧化还原状态关键传感器。哺乳动物中已经鉴定并表征了7个Sirtuins家族成员(SIRT1-7),其参与炎症、细胞生长、生理节律、能量代谢、神经元功能、应激反应和健康衰老等多种生理过程。本文归纳了NAD+的生理浓度及状态、NAD+  相似文献   

11.
张鑫  陈国强 《生物工程学报》2011,27(12):1749-1754
4-羟基丁酸(4-HB)不仅具有医学应用价值,而且是合成生物材料P3HB4HB的重要前体.在烟酰胺腺嘌呤二核苷酸(NAD)参与情况下,大肠杆菌Escherichia coli S17-1(pZL-dhaT-aldD)可以把1,4-丁二醇(1,4-BD)转化为4HB.为提高4HB产率,通过过表达烟酸磷酸核糖转移酶(PncB)和烟酰胺腺嘌呤二核苷酸合成酶(NadE)增加胞内NAD含量,从而加速1,4-BD转化反应的进行.结果表明,PncB-NadE的表达使1,4-BD转化率比对照组增加13.03%,由10g/L的1,4-BD得到4.87 g/L的4HB,单位细胞的4HB产量由1.32 g/g提高40.91%至1.86 g/g.因此PncB和NadE可用于促进1,4-BD转化为4HB.  相似文献   

12.
Submitochondrial particles (SMP) were produced from Jerusalem artichoke (Helianthus tuberosus L.) mitochondria by sonication and differential centrifugation. The SMP were about 50% inside-out as measured by the access of reduced cytochrome c to cytochrome c oxidase. Uncoupled NADH oxidation (1 mM NADH) by the SMP was 120 nmol O2 min?1mg?1, which was reduced to 98 nmol O2 min?1 (mg mitochondrial protein)?1 in the presence of EGTA. In contrast, the oxidation of NADH by intact mitochondria was completely inhibited by EGTA (from 182 to 14 nmol O2 min?1mg?1). The EGTA-resistant NADH oxidation by the SMP is ascribed to the NADH dehydrogenase(s) on the inside of the inner membrane and exposed to the medium in the inside-out SMP. In the presence of EGTA it could be shown that two NADH dehydrogenase activities were present in the SMP. One had an apparent Km of 7 μM for NADH, a Vmax of 80 nmol NADH min?1mg?1, and was rotenone-sensitive. This dehydrogenase is equivalent to the mammalian Complex I NADH dehydrogenase. The other dehydrogenase, which was rotenone-resistant, had a Km of 80 μM and a Vmax of 131 nmol NADH min?1mg?1; it is probably responsible for the rotenone-resistant oxidation of organic acids often observed in plant mitochondria. The redox poise of the pyridine nucleotides had only a small effect on the relative rates of the two internal dehydrogenases. Electron flow through these dehydrogenases appears, therefore, to be regulated mainly by the concentration of NADH in the matrix of the mitochondria.  相似文献   

13.
The mechanism of iron uptake in the chrysophyte microalga Dinobryon was studied. Previous studies have shown that iron is the dominant limiting elements for growth of Dinobryon in the Eshkol reservoir in northern Israel, which control its burst of bloom. It is demonstrated that Dinobryon has a light-stimulated ferrireductase activity, which is sensitive to the photosynthetic electron transport inhibitor DCMU and to the uncoupler CCCP. Iron uptake is also light-dependent, is inhibited by DCMU and by CCCP and also by the ferrous iron chelator BPDS. These results suggest that ferric iron reduction by ferrireductase is involved in iron uptake in Dinobryon and that photosynthesis provides the major reducing power to energize iron acquisition. Iron deprivation does not enhance but rather inhibits iron uptake contrary to observations in other algae.  相似文献   

14.
The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.  相似文献   

15.
    
Hydroxynitrile lyase from Linum usitatissimum (LuHNL) is an enzyme involved in the catabolism of cyanogenic glycosides to release hydrogen cyanide upon tissue damage. This enzyme strictly conserves the substrate- and NAD(H)-binding domains of Zn2+-containing alcohol dehydrogenase (ADH); however, there is no evidence suggesting that LuHNL possesses ADH activity. Herein, we determined the ligand-free 3D structure of LuHNL and its complex with acetone cyanohydrin and (R)-2-butanone cyanohydrin using X-ray crystallography. These structures reveal that an A-form NAD+ is tightly but not covalently bound to each subunit of LuHNL. The restricted movement of the NAD+ molecule is due to the “sandwich structure” on the adenine moiety of NAD+. Moreover, the structures and mutagenesis analysis reveal a novel reaction mechanism for cyanohydrin decomposition involving the cyano-zinc complex and hydrogen-bonded interaction of the hydroxyl group of cyanohydrin with Glu323/Thr65 and H2O/Lys162 of LuHNL. The deprotonated Lys162 and protonated Glu323 residues are presumably stabilized by a partially desolvated microenvironment. In summary, the substrate binding geometry of LuHNL provides insights into the differences in activities of LuHNL and ADH, and identifying this novel reaction mechanism is an important contribution to the study of hydroxynitrile lyases.  相似文献   

16.
    
The 2.1 A resolution crystal structure of flavin reductase P with the inhibitor nicotinamide adenine dinucleotide (NAD) bound in the active site has been determined. NAD adopts a novel, folded conformation in which the nicotinamide and adenine rings stack in parallel with an inter-ring distance of 3.6 A. The pyrophosphate binds next to the flavin cofactor isoalloxazine, while the stacked nicotinamide/adenine moiety faces away from the flavin. The observed NAD conformation is quite different from the extended conformations observed in other enzyme/NAD(P) structures; however, it resembles the conformation proposed for NAD in solution. The flavin reductase P/NAD structure provides new information about the conformational diversity of NAD, which is important for understanding catalysis. This structure offers the first crystallographic evidence of a folded NAD with ring stacking, and it is the first enzyme structure containing an FMN cofactor interacting with NAD(P). Analysis of the structure suggests a possible dynamic mechanism underlying NADPH substrate specificity and product release that involves unfolding and folding of NADP(H).  相似文献   

17.
    
The conformation of NAD bound to diphtheria toxin (DT), an ADP-ribosylating enzyme, has been compared to the conformations of NAD(P) bound to 23 distinct NAD(P)-binding oxidoreductase enzymes, whose structures are available in the Brookhaven Protein Data Bank. For the oxidoreductase enzymes, NAD(P) functions as a cofactor in electron transfer, whereas for DT, NAD is a labile substrate in which the N-glycosidic bond between the nicotinamide ring and the N-ribose is cleaved. All NAD(P) conformations were compared by (1) visual inspection of superimposed molecules, (2) RMSD of atomic positions, (3) principal component analysis, and (4) analysis of torsion angles and other conformational parameters. Whereas the majority of oxidoreductase-bound NAD(P) conformations are found to be similar, the conformation of NAD bound to DT is found to be unusual. Distinctive features of the conformation of NAD bound to DT that may be relevant to DT''s function as an ADP-ribosylating enzyme include (1) an unusually short distance between the PN and N1N atoms, reflecting a highly folded conformation for the nicotinamide mononucleotide (NMN) portion of NAD, and (2) a torsion angle chi N approximately 0 degree about the scissile N-glycosidic bond, placing the nicotinamide ring outside of the preferred anti and syn orientations. In NAD bound to DT, the highly folded NMN conformation and torsion angle chi N approximately 0 degree could contribute to catalysis, possibly by orienting the C1''N atom of NAD for nucleophilic attack, or by placing strain on the N-glycosidic bond, which is cleaved by DT. The unusual overall conformation of NAD bound to DT is likely to reflect the structure of DT, which is unusual among NAD(P)-binding enzymes. In DT, the NAD binding site is formed at the junction of two antiparallel beta-sheets. In contrast, although the 24 oxidoreductase enzymes belong to at least six different structural classes, almost all of them bind NAD(P) at the C-terminal end of a parallel beta-sheet. The structural alignments and principal component analysis show that enzymes of the same structural class bind to particularly similar conformations of NAD(P), with few exceptions. The conformation of NAD bound to DT superimposes closely with that of an NAD analogue bound to Pseudomonas exotoxin A, an ADP-ribosylating toxin that is structurally homologous to DT. This suggests that all of the ADP-ribosylating enzymes that are structurally homologous to DT and ETA will bind a highly similar conformation of NAD.  相似文献   

18.
生物钟调控机制广泛存在于各种类型的细胞中,控制着细胞代谢的节律性变化.最近的研究发现,NAD+依赖的组蛋白去乙酰化酶Sirt1参与了生物钟调控过程,对维持正常的生物钟节律具有重要作用;另一方面,Sirt1的表达也受到生物钟系统的调控,呈现出昼夜节律性的表达.因此Sirt1能与生物钟进行相互调控,并且这一作用机制很可能广泛参与了不同类型细胞内的信号转导和能量代谢过程.本文总结了Sirt1与生物钟之间相互调控的一些研究进展,对它们之间的分子调控机制进行了概述.  相似文献   

19.
The distribution and colocalization of nitric oxide synthase and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-diaphorase) was investigated in the adrenal gland of developing, adult and aging rats with the use of immunohistochemical and histochemical techniques. Nitric oxide synthase-immunoreactive neurons within the adrenal gland were found from the 20th day of gestation onwards. During early development the neurons were found as small clusters of smaller-size cells compared to those observed in the adult gland. Their number reached that of adult level by the 4th day after birth, and in the glands from aging rats a 28.6% increase was observed. Whilst no immunofluorescence was seen in chromaffin cells during early development, some cells from glands of aging rats showed nitric oxide synthase-immunoreactivity with varying intensity. The immunoreactive neurons from postnatal rat adrenals were also positive for NADPH-diaphorase, whilst those in prenatal rats were negative or lightly stained. Nitric oxide synthase-immunoreactive nerve fibres were present in all adrenal glands examined from the 16th day of gestation onwards. A considerable degree of variation in the distribution of immunoreactive fibres both in medulla and outer region of cortex at the different age groups was observed and described. Most, but not all, nitric oxide synthase-immunoreactive nerve fibres also showed NADPH-diaphorase staining.  相似文献   

20.
NAD glycohydrolases (NADases) catalyze the hydrolysis of NAD to ADP-ribose and nicotinamide. Although many members of the NADase family, including ADP-ribosyltransferases, have been cloned and characterized, the structure and function of NADases with pure hydrolytic activity remain to be elucidated. Here, we report the structural and functional characterization of a novel NADase from rabbit reticulocytes. The novel NADase is a glycosylated, glycosylphosphatidylinositol-anchored cell surface protein exclusively expressed in reticulocytes. shRNA-mediated knockdown of the NADase in bone marrow cells resulted in a reduction of erythroid colony formation and an increase in NAD level. Furthermore, treatment of bone marrow cells with NAD, nicotinamide, or nicotinamide riboside, which induce an increase in NAD content, resulted in a significant decrease in erythroid progenitors. These results indicate that the novel NADase may play a critical role in regulating erythropoiesis of hematopoietic stem cells by modulating intracellular NAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号