首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 3 毫秒
1.
Using current chemotherapy protocols, over 55% of lymphoma patients fail treatment. Novel agents are needed to improve lymphoma survival. The manganese porphyrin, MnTE-2-PyP(5+), augments glucocorticoid-induced apoptosis in WEHI7.2 murine thymic lymphoma cells, suggesting that it may have potential as a lymphoma therapeutic. However, the mechanism by which MnTE-2-PyP(5+) potentiates glucocorticoid-induced apoptosis is unknown. Previously, we showed that glucocorticoid treatment increases the steady state levels of hydrogen peroxide ([H(2)O(2)](ss)) and oxidizes the redox environment in WEHI7.2 cells. In the current study, we found that when MnTE-2-PyP(5+) is combined with glucocorticoids, it augments dexamethasone-induced oxidative stress however, it does not augment the [H(2)O(2)](ss) levels. The combined treatment depletes GSH, oxidizes the 2GSH:GSSG ratio, and causes protein glutathionylation to a greater extent than glucocorticoid treatment alone. Removal of the glucocorticoid-generated H(2)O(2) or depletion of glutathione by BSO prevents MnTE-2-PyP(5+) from augmenting glucocorticoid-induced apoptosis. In combination with glucocorticoids, MnTE-2-PyP(5+) glutathionylates p65 NF-κB and inhibits NF-κB activity. Inhibition of NF-κB with SN50, an NF- κB inhibitor, enhances glucocorticoid-induced apoptosis to the same extent as MnTE-2-PyP(5+). Taken together, these findings indicate that: 1) H(2)O(2) is important for MnTE-2-PyP(5+) activity; 2) Mn-TE-2-PyP(5+) cycles with GSH; and 3) MnTE-2-PyP(5+) potentiates glucocorticoid-induced apoptosis by glutathionylating and inhibiting critical survival proteins, including NF-κB. In the clinic, over-expression of NF-κB is associated with a poor prognosis in lymphoma. MnTE-2-PyP(5+) may therefore, synergize with glucocorticoids to inhibit NF-κB and improve current treatment.  相似文献   

2.
3.
Most mitochondria-based methods used to investigate toxins require the use of relatively large amounts of material and hence compromised sensitivity in assay. We adopted procedures from methods initially developed to diagnose mitochondrial encephalomyopathies and unified these into a single assay. Eukaryotic cell membranes are selectively permeabilized with digitonin to render a system in which mitochondrial respiration can be measured rapidly and with considerable sensitivity. Mitochondria remain intact, uninjured, and in their natural environment where mitochondrial respiration can be measured in situ under physiologically relevant conditions. This approach furthermore allows measurement of toxin effects on individual mitochondrial complexes. Numerous compounds at varying concentrations can be screened for mitochondrial toxicity, while the site of mitochondrial inhibition can be determined simultaneously. We used this assay to investigate, in murine neuroblastoma (N-2alpha) cells, the mitochondrial inhibitory properties of the parkinsonian-inducing proneurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and its neurotoxic monoamine oxidase-B (MAO-B)-generated metabolite, the 1-methyl-4-phenylpyridinium species (MPP(+)). Within the time frame of each measurement (15 min), MPTP (< or = 1 mM) did not interfere with in situ mitochondrial respiration. As expected, MPP(+) was found to be a potent Complex I inhibitor but surprisingly also found to inhibit Complex IV. Optimized conditions for performing this assay are provided.  相似文献   

4.
The effect of (2RS, 3RS)-1-(4-Chlorophenyl)-4, 4-dimethyl-2-(1H-1,2,4 triazol-1-yl) pentan-3-ol (PP333) on the growth and transpiration of normal and root pruned colt rootstocks was measured. PP333 reduced plant height, stem diameter increment, leaf number, area and weight and stem weight. Root pruning reduced root, leaf and stem weight, and plant height in control plants. PP333 reduced both total water use and transpiration per unit leaf area and increased stomatal resistance. In control plants root pruning also reduced total water use and increased stomatal resistance. 15 days after the beginning of the experiment half the plants in all treatments were allowed to dry out. The effects of drought, i.e. reduced transpiration, growth and leaf water potentials, were smaller in PP333 treated than in control plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号