共查询到20条相似文献,搜索用时 15 毫秒
1.
Alvarez MN Piacenza L Irigoín F Peluffo G Radi R 《Archives of biochemistry and biophysics》2004,432(2):222-232
We studied the capacity of macrophage-derived peroxynitrite to diffuse into and exert cytotoxicity against Trypanosoma cruzi, the causative agent of Chagas' disease. In two types of macrophage-T. cruzi co-cultures, one with a fixed separation distance between source and target cells, and another involving cell-to-cell interactions, peroxynitrite resulted in significant oxidation of intracellular dihydrorhodamine and inhibition of [(3)H]thymidine incorporation in T. cruzi, which were not observed by superoxide or nitric oxide alone. The effects were attenuated in the presence of bicarbonate, in agreement with the extracellular consumption of peroxynitrite by its fast reaction with CO(2). However, studies using different T. cruzi densities, which allow to modify average diffusion distances of exogenously added peroxynitrite to target cells, indicate that at distances <5 microm, the diffusion process outcompetes the reaction with CO(2) and that the levels of peroxynitrite formed by macrophages would be sufficient to cause toxicity to T. cruzi during cell-to-cell contact and/or inside the phagosome. 相似文献
2.
Michael J. Menconi Naoki Unno Marianne Smith Douglas E. Aguirre Mitchell P. Fink 《Biochimica et Biophysica Acta (BBA)/General Subjects》1998,1425(1):189-203
Many of the cytopathic effects of nitric oxide (NO·) are mediated by peroxynitrite (PN), a product of the reaction between NO· and superoxide radical (O·?2). In the present study, we investigated the role of PN, O·?2 and hydroxyl radical (OH·) as mediators of epithelial hyperpermeability induced by the NO· donor, S-nitroso-N-acetylpenicillamine (SNAP), and the PN generator, 3-morpholinosydnonimine (SIN-1). Caco-2BBe enterocytic monolayers were grown on permeable supports in bicameral chambers. Epithelial permeability, measured as the apical-to-basolateral flux of fluorescein disulfonic acid, increased after 24 h of incubation with 5.0 mM SNAP or SIN-1. Addition of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, an NO· scavenger, or Tiron, an O·?2 scavenger, reduced the increase in permeability induced by both donor compounds. The SNAP-induced increase in permeability was prevented by allopurinol, an inhibitor of xanthine oxidase (a source of endogenous O·?2). Diethyldithiocarbamate, a superoxide dismutase inhibitor, and pyrogallol, an O·?2 generator, potentiated the increase in permeability induced by SNAP. Addition of the PN scavengers deferoxamine, urate, or glutathione, or the OH· scavenger mannitol, attenuated the increase in permeability induced by both SNAP and SIN-1. Both donor compounds decreased intracellular levels of glutathione and protein-bound sulfhydryl groups, suggesting the generation of a potent oxidant. These results support a role for PN, and possibly OH·, in the pathogenesis of NO· donor-induced intestinal epithelial hyperpermeability. 相似文献
3.
Nitric oxide can differentially modulate striatal neurotransmitter concentrations via soluble guanylate cyclase and peroxynitrite formation 总被引:13,自引:0,他引:13
In vivo microdialysis was used to investigate whether nitric oxide (NO) modulates striatal neurotransmitter release in the rat through inducing cyclic GMP formation via soluble guanylate cyclase or formation of peroxynitrite (ONOO(-)). When NO donors, S-nitroso-N-acetyl-DL-penicillamine (SNAP; 1 mM) or (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1- ium-1, 2-diolate (NOC-18; 1 mM), were retrodialysed for 15 min, acetylcholine (ACh), serotonin (5-HT), glutamate (Glu), gamma-aminobutyric acid (GABA), and taurine levels were significantly increased, whereas those of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) were decreased. Only effects on ACh, 5-HT, and GABA showed calcium dependency. Inhibition of soluble guanylate cyclase by 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ; 100 and 200 microM) dose-dependently reduced NO donor-evoked increases in ACh, 5-HT, Glu, and GABA levels. Coperfusion of SNAP or NOC-18 with an ONOO(-) scavenger, L-cysteine (10 mM) resulted in enhanced concentrations of Glu and GABA. On the other hand, DA concentrations increased rather than decreased, and no reductions in DOPAC and 5-HIAA occurred. This increase in DA and the potentiation of Glu and GABA were calcium-dependent and prevented by ODQ. Similar to NO, infusions of ONOO(-) (10 or 100 microM) decreased DA, DOPAC, and 5-HIAA. Overall, these results demonstrate that NO increases ACh, 5-HT, Glu, and GABA levels primarily through a cyclic GMP-dependent mechanism. For DA, DOPAC, and 5-HIAA, effects are determined by levels of ONOO(-) stimulated by NO donors. When these are high, they effectively reduce extracellular concentrations through oxidation. When they are low, DA concentrations are increased in a cyclic GMP-dependent manner and may act to facilitate Glu and GABA release further. Thus, changes in brain levels of antioxidants, and the altered ability of NO to stimulate cyclic GMP formation during ageing, or neurodegenerative pathologies, may particularly impact on the functional consequences of NO on striatal dopaminergic and glutamatergic function. 相似文献
4.
Li-Man Hung Jiung-Pang Huang Jiuan-Miaw Liao Meng-Hsuan Yang Dai-Er Li Yuan-Ji Day Shiang-Suo Huang 《Journal of biomedical science》2014,21(1)
Background
The functions of free radicals on the effects of insulin that result in protection against cerebral ischemic insult in diabetes remain undefined. This present study aims to explain the contradiction among nitric oxide (NO)/superoxide/peroxynitrite of insulin in amelioration of focal cerebral ischemia–reperfusion (FC I/R) injury in streptozotocin (STZ)-diabetic rats and to delineate the underlying mechanisms. Long-Evans male rats were divided into three groups (age-matched controls, diabetic, and diabetic treated with insulin) with or without being subjected to FC I/R injury.Results
Hyperglycemia exacerbated microvascular functions, increased cerebral NO production, and aggravated FC I/R-induced cerebral infarction and neurological deficits. Parallel with hypoglycemic effects, insulin improved microvascular functions and attenuated FC I/R injury in STZ-diabetic rats. Diabetes decreased the efficacy of NO and superoxide production, but NO and superoxide easily formed peroxynitrite in diabetic rats after FC I/R injury. Insulin treatment significantly rescued the phenomenon.Conclusions
These results suggest that insulin renders diabetic rats resistant to acute ischemic stroke by arresting NO reaction with superoxide to form peroxynitrite. 相似文献5.
Sergio D. Catz Maria C. Carreras Juan J. Poderoso 《Free radical biology & medicine》1995,19(6):741-748
Nitric oxide synthase (NOS) inhibitors have been reported to modulate luminol-dependent chemiluminescence (CL) in rat macrophages, whereas the potent oxidant peroxynitrite (ONOO-) was shown to react with luminol to yield CL in a cellfree system. We evaluated the role of the
-arginine/NOS pathway in luminol CL by phorbol ester-activated human polymorpho-nuclear (PMN) leukocytes using the NOS inhibitors NG-monomethyl-
-arginine (
-NMMA) and N-iminoethyl-
-omithine (
-NIO). Nitric oxide (·NO) release was determined by oxidation of oxymyoglobin. In addition, the effect of NOS inhibitors on superoxide anion O2-) production was measured. Luminol CL was notably diminished by
-NMMA in a dose-dependent manner. Superoxide dismutase (SOD) also decreased luminol CL and
-NMMA potentiated light emission decrease produced by SOD. Nitric oxide and O2·- production was significantly decreased by
-NMMA; moreover, luminol-dependent CL but not O2·- production was attenuated by
-NIO. These data suggest that products of catalytic activity of both ·NO synthase and NADPH oxidase are required to elicit maximal luminol CL in this system. These studies demonstrate that the NOS synthase pathway is involved in luminol CL by human PMN, and they suggest that ONOO would be an unrecognized mediator in this phenomenon. 相似文献
6.
WonBong Lim Jae-Hyung Kim EunByul Gook JiSun Kim YoungJong Ko InAe Kim HyukIl Kwon HoiSoon Lim ByungCho Jung KyuHo Yang NamKi Choi MiSook Kim SeoYune Kim HongRan Choi OkJoon Kim 《Free radical biology & medicine》2009,47(6):850-857
Nitric oxide (NO) is a major factor contributing to the loss of neurons in ischemic stroke, demyelinating diseases, and other neurodegenerative disorders. NO not only functions as a direct neurotoxin, but also combines with superoxide (O2−) by a diffusion-controlled reaction to form peroxynitrite (ONOO−), a species that contributes to oxidative signaling and cellular apoptosis. However, the mechanism by which ONOO− induces apoptosis remains unclear, although subsequent formation of reactive oxygen species (ROS) has been suggested. The aim of this study was to further investigate the triggers of the apoptotic pathway using O2− scavenging with light irradiation to block ONOO− production. Antiapoptotic effects of light irradiation in sodium nitroprusside (SNP)-treated SH-SY5Y cells were assayed by reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, DNA fragmentation, flow cytometry, Western blot, and caspase activity assays. In addition, NO, total ROS, O2−, and ONOO− levels were measured to observe changes in NO and its possible involvement in radical induction. Cell survival was reduced to approximately 40% of control levels by SNP treatment, and this reduction was increased to 60% by low-level light irradiation. Apoptotic cells were observed in the SNP-treated group, but the frequency of these was reduced in the irradiation group. NO, O2−, total ROS, and ONOO− levels were increased after SNP treatment, but O2−, total ROS, and ONOO− levels were decreased after irradiation, despite the high NO concentration induced by SNP treatment. Cytochrome c was released from mitochondria of SNP-treated SH-SY5Y cells, but not of irradiated cells, resulting in a decrease in caspase-3 and -9 activity in SNP-treated cells. Finally, these results show that 635-nm irradiation, by promoting the scavenging of O2−, protected against neuronal death through blocking the mitochondrial apoptotic pathway induced by ONOO− synthesis. 相似文献
7.
Estevez AY Pritchard S Harper K Aston JW Lynch A Lucky JJ Ludington JS Chatani P Mosenthal WP Leiter JC Andreescu S Erlichman JS 《Free radical biology & medicine》2011,51(6):1155-1163
Cerium oxide nanoparticles (nanoceria) are widely used as catalysts in industrial applications because of their potent free radical-scavenging properties. Given that free radicals play a prominent role in the pathology of many neurological diseases, we explored the use of nanoceria as a potential therapeutic agent for stroke. Using a mouse hippocampal brain slice model of cerebral ischemia, we show here that ceria nanoparticles reduce ischemic cell death by approximately 50%. The neuroprotective effects of nanoceria were due to a modest reduction in reactive oxygen species, in general, and ~ 15% reductions in the concentrations of superoxide (O2•−) and nitric oxide, specifically. Moreover, treatment with nanoceria markedly decreased (~ 70% reduction) the levels of ischemia-induced 3-nitrotyrosine, a modification to tyrosine residues in proteins induced by the peroxynitrite radical. These findings suggest that scavenging of peroxynitrite may be an important mechanism by which cerium oxide nanoparticles mitigate ischemic brain injury. Peroxynitrite plays a pivotal role in the dissemination of oxidative injury in biological tissues. Therefore, nanoceria may be useful as a therapeutic intervention to reduce oxidative and nitrosative damage after a stroke. 相似文献
8.
The role of the reactions of NO with superoxide and oxygen in biological systems: A kinetic approach
In this study we calculate the half-life of ·NO in its reactions with superoxide and with oxygen under various conditions using the known rate constants for these reactions. The measured half-life of ·NO in biological systems is 3–5 s, which agrees well with the calculated value for intracellular ·NO, but not for extracellular ·NO under normal physiological conditions. The autoxidation of ·NO to yield NO2 as a final product cannot be responsible for such a short measured half-life under normal as well as pathologic conditions. Therefore, if there is direct evidence for the occurrence of the reaction of ·NO with O2 in the medium, one has to assume that the steady state concentrations of free ·NO are much lower than those measured. The very low concentrations of free ·NO in biological systems may result from its reversible strong binding to biological molecules. Simulation of the mechanism of the autoxidation of ·NO indicates that the binding constants of ·NO to O2 or to another ·NO are too small to account for the very low concentration of free ·NO in biological systems. Nevertheless, the reaction of ·NO with oxygen cannot be neglected in biological systems if the intermediate ONOO· reacts rapidly with a biological target. The biological damage caused by ONOO′ is expected to be due to the radical itself and to peroxynitrite, which is most probably formed via the reaction of ONOO· with the biological molecule. 相似文献
9.
Mechanisms of slower nitric oxide uptake by red blood cells and other hemoglobin-containing vesicles
Azarov I Liu C Reynolds H Tsekouras Z Lee JS Gladwin MT Kim-Shapiro DB 《The Journal of biological chemistry》2011,286(38):33567-33579
Nitric oxide (NO) acts as a smooth muscle relaxation factor and plays a crucial role in maintaining vascular homeostasis. NO is scavenged rapidly by hemoglobin (Hb). However, under normal physiological conditions, the encapsulation of Hb inside red blood cells (RBCs) significantly retards NO scavenging, permitting NO to reach the smooth muscle. The rate-limiting factors (diffusion of NO to the RBC surface, through the RBC membrane or inside of the RBC) responsible for this retardation have been the subject of much debate. Knowing the relative contribution of each of these factors is important for several reasons including optimization of the development of blood substitutes where Hb is contained within phospholipid vesicles. We have thus performed experiments of NO uptake by erythrocytes and microparticles derived from erythrocytes and conducted simulations of these data as well as that of others. We have included extracellular diffusion (that is, diffusion of the NO to the membrane) and membrane permeability, in addition to intracellular diffusion of NO, in our computational models. We find that all these mechanisms may modulate NO uptake by membrane-encapsulated Hb and that extracellular diffusion is the main rate-limiting factor for phospholipid vesicles and erythrocytes. In the case of red cell microparticles, we find a major role for membrane permeability. These results are consistent with prior studies indicating that extracellular diffusion of several gas ligands is also rate-limiting for erythrocytes, with some contribution of a low membrane permeability. 相似文献
10.
Nitric oxide (NO) reacts with superoxide to produce peroxynitrite, a potent oxidant and reportedly exerts cytotoxic action. Herein we validated the hypothesis that interaction of NO with superoxide exerts protection against superoxide toxicity using macrophages from mice with a knockout (KO) of inducible NO synthase (NOS2) and superoxide dismutase 1 (SOD1), either individually or both. While no difference was observed in viability between wild-type (WT) and NOS2KO macrophages, SOD1KO and SOD1-and NOS2-double knockout (DKO) macrophages were clearly vulnerable and cell death was observed within four days. A lipopolysaccharide (LPS) treatment induced the formation of NOS2, which resulted in NO production in WT and these levels were even higher in SOD1KO macrophages. The viability of the DKO macrophages but not SOD1KO macrophages were decreased by the LPS treatment. Supplementation of NOC18, a NO donor, improved the viability of SOD1KO and DKO macrophages both with and without the LPS treatment. The NOS2 inhibitor nitro-l-arginine methyl ester consistently decreased the viability of LPS-treated SOD1KO macrophages but not WT macrophages. Thus, in spite of the consequent production of peroxynitrite in LPS-stimulated macrophages, the coordinated elevation of NO appears to exert anti-oxidative affects by coping with superoxide cytotoxicity upon conditions of inflammatory stimuli. 相似文献
11.
In rabbits and rodents, nitric oxide (NO) is generally considered to be critical for ovulation. In monovulatory species, however, the importance of NO has not been determined, nor is it clear where in the preovulatory cascade NO may act. The objectives of this study were (1) to determine if nitric oxide synthase (NOS) enzymes are regulated by luteinizing hormone (LH) and (2) to determine if and where endogenous NO is critical for expression of genes essential for the ovulatory cascade in bovine granulosa cells in serum-free culture. Time– and dose–response experiments demonstrated that LH had a significant stimulatory effect on endothelial NOS (NOS3) mRNA abundance, but in a prostaglandin-dependent manner. NO production was stimulated by LH before a detectable increase in NOS3 mRNA levels was observed. Pretreatment of cells with the NOS inhibitor L-NAME blocked the effect of LH on the epidermal growth factor (EGF)-like ligands epiregulin and amphiregulin, as well as prostaglandin–endoperoxide synthase-2 mRNA abundance and protein levels. Similarly, EGF treatment increased mRNA encoding epiregulin, amphiregulin, and the early response gene EGR1, and this was inhibited by pretreatment with L-NAME. Interestingly, pretreatment with L-NAME had no effect on either ERK1/2 or AKT activation. Taken together, these results suggest that endogenous NOS activity is critical for the LH-induced ovulatory cascade in granulosa cells of a monotocous species and acts downstream of EGF receptor activation but upstream of the EGF-like ligands. 相似文献
12.
Microglia are the resident immune cells in the brain. Microglial activation is characteristic of several inflammatory and neurodegenerative diseases including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Though lipopolysaccharide (LPS)-induced microglial activation in models of Parkinson's disease is well documented, the free radical-mediated protein radical formation and its underlying mechanism during LPS-induced microglial activation are not known. Here we have used immuno-spin trapping and RNA interference to investigate the role of inducible nitric oxide synthase (iNOS) in peroxynitrite-mediated protein radical formation in murine microglial BV2 cells treated with LPS. Treatment of BV2 cells with LPS resulted in morphological changes, induction of iNOS, and increased protein radical formation. Pretreatments with FeTPPS (a peroxynitrite decomposition catalyst), L-NAME (total NOS inhibitor), 1400W (iNOS inhibitor), and apocynin significantly attenuated LPS-induced protein radical formation and tyrosine nitration. Results obtained with coumarin-7-boronic acid, a highly specific probe for peroxynitrite detection, correlated with LPS-induced tyrosine nitration, which demonstrated involvement of peroxynitrite in protein radical formation. A similar degree of protection conferred by 1400W and L-NAME led us to conclude that only iNOS, and no other forms of NOS, is involved in LPS-induced peroxynitrite formation. Subsequently, siRNA for iNOS, the iNOS-specific inhibitor 1400W, the NF-κB inhibitor PDTC, and the p38 MAPK inhibitor SB202190 was used to inhibit iNOS directly or indirectly. Inhibition of iNOS precisely correlated with decreased protein radical formation in LPS-treated BV2 cells. The time course of protein radical formation also matched the time course of iNOS expression. Taken together, these results prove the role of iNOS in peroxynitrite-mediated protein radical formation in LPS-treated microglial BV2 cells. 相似文献
13.
Hiroshi Ohshima Yumiko Yoshie Sebastien Auriol Isabelle Gilibert 《Free radical biology & medicine》1998,25(9):1057-1065
Antioxidant and pro-oxidant activities of flavonoids have been reported. We have studied the effects of 18 flavonoids and related phenolic compounds on DNA damage induced by nitric oxide (NO), peroxynitrite, and nitroxyl anion (NO−). Similarly to our previous findings with catecholamines and catechol-estrogens, DNA single-strand breakage was induced synergistically when pBR322 plasmid was incubated in the presence of an NO-releasing compound (diethylamine NONOate) and a flavonoid having an ortho-trihydroxyl group in either the B ring (e.g., epigallocatechin gallate) or the A ring (e.g., quercetagetin). Either NO or any of the above flavonoids alone did not induce strand breakage significantly. However, most of the tested flavonoids inhibited the peroxynitrite-mediated formation of 8-nitroguanine in calf-thymus DNA, measured by a new HPLC-electrochemical detection method, as well as the peroxynitrite-induced strand breakage. NO− generated from Angeli’s salt caused DNA strand breakage, which was also inhibited by flavonoids but at only high concentrations. On the basis of these findings, we propose that NO− and/or peroxynitrite could be responsible for DNA strand breakage induced by NO and a flavonoid having an ortho-trihydroxyl group. Our results indicate that flavonoids have antioxidant properties, but some act as pro-oxidants in the presence of NO. 相似文献
14.
The coupling between neuronal activity and cerebral blood flow (CBF) is essential for normal brain function. The mechanisms behind this neurovascular coupling process remain elusive, mainly because of difficulties in probing dynamically the functional and coordinated interaction between neurons and the vasculature in vivo. Direct and simultaneous measurements of nitric oxide (NO) dynamics and CBF changes in hippocampus in vivo support the notion that during glutamatergic activation nNOS-derived NO induces a time-, space-, and amplitude-coupled increase in the local CBF, later followed by a transient increase in local O2 tension. These events are dependent on the activation of the NMDA-glutamate receptor and nNOS, without a significant contribution of endothelial-derived NO or astrocyte–neuron signaling pathways. Upon diffusion of NO from active neurons, the vascular response encompasses the activation of soluble guanylate cyclase. Hence, in the hippocampus, neurovascular coupling is mediated by nNOS-derived NO via a diffusional connection between active glutamatergic neurons and blood vessels. 相似文献
15.
Summary. Many studies have suggested an antioxidant role for taurine, but few studies have directly measured its free radical scavenging
activity. The aim of the present study was to directly determine the action of taurine and taurine analogs to inhibit peroxynitrite-mediated
oxidation of dihydrorhodamine 123 (DHR) to rhodamine. Taurine was also tested to determine if it could attenuate the toxicity
of sodium nitroprusside (SNP) to neuronal cultures. Taurine at concentrations above 30 mM had a modest ability to inhibit
peroxynitrite formation derived from SIN-1. Hypotaurine could inhibit peroxynitrite formation from both SIN-1 (↓75%) and SNP
(↓50%) at 10 mM. Other taurine analogs (homotaurine, β-alanine & isethionic acid) slightly potentiated DHR oxidation by SIN-1. Short-term (1-hour) treatment of PC12 cultures with
either SNP (1–2 mM) or taurine (20–40 mM) appeared to induce cellular proliferation. In contrast, 24-hour treatment with SNP
(1 mM) induced cell death. Combination treatments with taurine and SNP appeared to interact in an additive fashion for both
cell proliferation and neurotoxic actions. It appears unlikely that taurine is a major endogenous scavenger of peroxynitrite.
Received May 9, 2000 Accepted June 13, 2000 相似文献
16.
Nitric oxide, a gaseous free radical, is poorly reactive with most biomolecules but highly reactive with other free radicals. Its ability to scavenge peroxyl and other damaging radicals may make it an important antioxidant in vivo, particular in the cardiovascular system, although this ability has been somewhat eclipsed in the literature by a focus on the toxicity of peroxynitrite, generated by reaction of O·-2 with NO· (or of NO- with O2). On balance, experimental and theoretical data support the view that ONOO- can lead to hydroxyl radical (OH·) generation at pH 7.4, but it seems unlikely that OH· contributes much to the cytotoxicity of ONOO-. The cytotoxicity of ONOO- may have been over-emphasized: its formation and rapid reaction with antioxidants may provide a mechanism of using NO· to dispose of excess O·-2, or even of using O·-2 to dispose of excess NO·, in order to maintain the correct balance between these radicals in vivo. Injection or instillation of “bolus” ONOO- into animals has produced tissue injury, however, although more experiments generating ONOO- at steady rates in vivo are required. The presence of 3-nitrotyrosine in tissues is still frequently taken as evidence of ONOO- generation in vivo, but abundant evidence now exists to support the view that it is a biomarker of several “reactive nitrogen species”. Another under-addressed problem is the reliability of assays used to detect and measure 3-nitrotyrosine in tissues and body fluids: immunostaining results vary between laboratories and simple HPLC methods are susceptible to artefacts. Exposure of biological material to low pH (e.g. during acidic hydrolysis to liberate nitrotyrosine from proteins) or to H2O2 might cause artefactual generation of nitrotyrosine from NO-2 in the samples. This may be the origin of some of the very large values for tissue nitrotyrosine levels quoted in the literature. Nitrous acid causes not only tyrosine nitration but also DNA base deamination at low pH: these events are relevant to the human stomach since saliva and many foods are rich in nitrite. Several plant phenolics inhibit nitration and deamination in vitro, an effect that could conceivably contribute to their protective effects against gastric cancer development. 相似文献
17.
Immunomodulatory cytokines suppress epithelial nitric oxide production in inflammatory bowel disease by acting on mononuclear cells 总被引:6,自引:0,他引:6
Linehan JD Kolios G Valatas V Robertson DA Westwick J 《Free radical biology & medicine》2005,39(12):1560-1569
Inducible nitric oxide synthase (iNOS) activity in colonic epithelial HT-29 cells is modulated by the T-cell-derived cytokines IL-4 and IL-13, but is not affected by IL-10 despite its effect in models of colitis. We studied the effects of these cytokines on nitric oxide (NO) production by colonic tissue. IL-10 and IL-4 but not IL-13 suppressed the NO production and iNOS expression by inflamed tissue and cytokine-stimulated noninflamed tissue from patients with ulcerative colitis, whereas the three cytokines suppressed NO production in cytokine-stimulated biopsies from controls. To examine why colonic biopsies and HT-29 cells respond differently to immunomodulatory cytokines, a coculture of mixed mononuclear monocytes (MMC) and HT-29 cells was studied. Treatment of HT-29 cells with conditioned medium from IFN-γ/LPS-stimulated MMC produced significant amounts of NO, which suggested the presence of an MMC-derived soluble factor modifying epithelial NO production. Pretreatment of IFN-γ/LPS-stimulated MMC with IL-10 and IL-4 but not IL-13 suppressed NO production by HT-29 cells. Interestingly, pretreatment of HT-29 cells with IL-1 receptor antagonist suppressed the IFN-γ/LPS-stimulated MMC-induced NO production. These results suggest that immunomodulatory cytokines might exert an inhibitory effect on NO up-regulation by colonic epithelium via the inhibition of MMC-derived soluble mediators, such as IL-1. 相似文献
18.
The role of reactive nitrogen species in secondary spinal cord injury: formation of nitric oxide, peroxynitrite, and nitrated protein 总被引:8,自引:0,他引:8
To determine whether reactive nitrogen species contribute to secondary damage in CNS injury, the time courses of nitric oxide, peroxynitrite, and nitrotyrosine production were measured following impact injury to the rat spinal cord. The concentration of nitric oxide measured by a nitric oxide-selective electrode dramatically increased immediately following injury and then quickly declined. Nitro-L-arginine reduced nitric oxide production. The extracellular concentration of peroxynitrite, measured by perfusing tyrosine through a microdialysis fiber into the cord and quantifying nitrotyrosine in the microdialysates, significantly increased after injury to 3.5 times the basal level, and superoxide dismutase and nitro-L-arginine completely blocked peroxynitrite production. Tyrosine nitration examined immunohistochemically significantly increased at 12 and 24 h postinjury, but not in sham-control sections. Mn(III) tetrakis(4-benzoic acid)-porphyrin (a novel cell-permeable superoxide dismutase mimetic) and nitro-L-arginine significantly reduced the numbers of nitrotyrosine-positive cells. Protein-bound nitrotyrosine was significantly higher in the injured tissue than in the sham-operated controls. These results demonstrate that traumatic injury increases nitric oxide and peroxynitrite production, thereby nitrating tyrosine, including protein-bound tyrosine. Together with our previous report that trauma increases superoxide, our results suggest that reactive nitrogen species cause secondary damage by nitrating protein through the pathway superoxide + nitric oxide peroxynitrite protein nitration. 相似文献
19.
Dungel P Mittermayr R Haindl S Osipov A Wagner C Redl H Kozlov AV 《Archives of biochemistry and biophysics》2008,471(2):109-115
Nitric oxide (NO) is known to inhibit mitochondrial respiration reversibly. This study aimed at clarifying whether low level illumination at specific wavelengths recovers mitochondrial respiration inhibited by NO and glycerol-trinitrate (GTN), a clinically used NO mimetic. NO fully inhibited respiration of liver mitochondria at concentrations occurring under septic shock. The respiration was completely restored by illumination at the wavelength of 430 nm while longer wavelengths were less effective. GTN inhibited mitochondrial respiration though the efficiency of GTN was lower compared to NO concentrations observed in sepsis models. However, GTN inhibition was absolutely insensitive to illumination regardless of wavelength used. Our data show that visible light of short wavelengths efficiently facilitates the recovery of mitochondria inhibited by NO-gas at the levels generated under septic conditions. The inhibition of mitochondrial respiration by GTN is not sensitive to visible light, suggesting an inhibition mechanism other that NO mediation. 相似文献