首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipid droplets (LDs) are ubiquitous organelles that store metabolic energy in the form of neutral lipids (typically triacylglycerols and steryl esters). Beyond being inert energy storage compartments, LDs are dynamic organelles that participate in numerous essential metabolic functions. Cells generate LDs de novo from distinct sub-regions at the endoplasmic reticulum (ER), but what determines sites of LD formation remains a key unanswered question. Here, we review the factors that determine LD formation at the ER, and discuss how they work together to spatially and temporally coordinate LD biogenesis. These factors include lipid synthesis enzymes, assembly proteins, and membrane structural requirements. LDs also make contact with other organelles, and these inter-organelle contacts contribute to defining sites of LD production. Finally, we highlight emerging non-canonical roles for LDs in maintaining cellular homeostasis during stress.  相似文献   

2.
Reticulon and REEP family of proteins stabilize the high curvature of endoplasmic reticulum (ER) tubules. Plasmodium berghei Yop1 (PbYop1) is a REEP5 homolog in Plasmodium. Here, we characterize its function using a gene-knockout (Pbyop1∆). Pbyop1∆ asexual stage parasites display abnormal ER architecture and an enlarged digestive vacuole. The erythrocytic cycle of Pbyop1∆ parasites is severely attenuated and the incidence of experimental cerebral malaria is significantly decreased in Pbyop1∆-infected mice. Pbyop1∆ sporozoites have reduced speed, are slower to invade host cells but give rise to equal numbers of infected HepG2 cells, as WT sporozoites. We propose that PbYOP1’s disruption may lead to defects in trafficking and secretion of a subset of proteins required for parasite development and invasion of erythrocytes. Furthermore, the maintenance of ER morphology in different parasite stages is likely to depend on different proteins.  相似文献   

3.
Seipin is necessary for both adipogenesis and lipid droplet (LD) organization in nonadipose tissues; however, its molecular function is incompletely understood. Phenotypes in the seipin-null mutant of Saccharomyces cerevisiae include aberrant droplet morphology (endoplasmic reticulum–droplet clusters and size heterogeneity) and sensitivity of droplet size to changes in phospholipid synthesis. It has not been clear, however, whether seipin acts in initiation of droplet synthesis or at a later step. Here we utilize a system of de novo droplet formation to show that the absence of seipin results in a delay in droplet appearance with concomitant accumulation of neutral lipid in membranes. We also demonstrate that seipin is required for vectorial budding of droplets toward the cytoplasm. Furthermore, we find that the normal rate of droplet initiation depends on 14 amino acids at the amino terminus of seipin, deletion of which results in fewer, larger droplets that are consistent with a delay in initiation but are otherwise normal in morphology. Importantly, other functions of seipin, namely vectorial budding and resistance to inositol, are retained in this mutant. We conclude that seipin has dissectible roles in both promoting early LD initiation and in regulating LD morphology, supporting its importance in LD biogenesis.  相似文献   

4.
Autophagosome biogenesis is the key event associated with the stress‐responsive autophagic pathway, allowing the capture of specific cargoes and their delivery to the lysosomal degradative compartment. Although the endoplasmatic reticulum (ER) appears to be central for the assembly of autophagosomal membranes, it is also involved in several events regulating trafficking and local signaling, e.g., the establishment of contact sites with other organelles, the vesicular transport to the Golgi apparatus, and the biogenesis and turnover of lipid droplets. In this issue of EMBO reports, Moretti et al 1 identify the ER transmembrane protein TMEM41B as a novel regulator of autophagosome biogenesis and unravel its involvement in lipid droplet dynamics, also highlighting the role of ER components at the interface of lipid metabolism and regulation of autophagy.  相似文献   

5.
Lipid droplets (LDs) are neutral lipid-containing organelles enclosed in a single monolayer of phospholipids. LD formation begins with the accumulation of neutral lipids within the bilayer of the endoplasmic reticulum (ER) membrane. It is not known how the sites of formation of nascent LDs in the ER membrane are determined. Here we show that multiple C2 domain–containing transmembrane proteins, MCTP1 and MCTP2, are at sites of LD formation in specialized ER subdomains. We show that the transmembrane domain (TMD) of these proteins is similar to a reticulon homology domain. Like reticulons, these proteins tubulate the ER membrane and favor highly curved regions of the ER. Our data indicate that the MCTP TMDs promote LD biogenesis, increasing LD number. MCTPs colocalize with seipin, a protein involved in LD biogenesis, but form more stable microdomains in the ER. The MCTP C2 domains bind charged lipids and regulate LD size, likely by mediating ER–LD contact sites. Together, our data indicate that MCTPs form microdomains within ER tubules that regulate LD biogenesis, size, and ER–LD contacts. Interestingly, MCTP punctae colocalized with other organelles as well, suggesting that these proteins may play a general role in linking tubular ER to organelle contact sites.  相似文献   

6.
Yuan Li  Wei-Xing Zong 《Autophagy》2017,13(11):1995-1997
Fatty acids are an important cellular energy source under starvation conditions. However, excessive free fatty acids (FFAs) in the cytoplasm cause lipotoxicity. Therefore, it is important to understand the mechanisms by which cells mobilize lipids and maintain a homeostatic level of fatty acids. Recent evidence suggests that cells can break down lipid droplets (LDs), the intracellular organelles that store neutral lipids, via PNPLA2/adipose triglyceride lipase and a selective type of macroautophagy/autophagy termed lipophagy, to release FFAs under starvation conditions. FFAs generated from LD catabolism are either transported to mitochondria for β-oxidation or converted back to LDs. The biogenesis of LDs under starvation conditions is mediated by autophagic degradation of membranous organelles and requires diacylglycerol O-acyltransferase 1, which serves as an adaptive cellular protective mechanism against lipotoxicity.  相似文献   

7.
Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.

The lipid droplet (LD) proteins LDIP and LDAP cooperate with endoplasmic reticulum-localized SEIPIN to coordinate LD formation in plant cells.  相似文献   

8.
Neutral lipid storage in lipid droplets (LDs) is a conserved process across diverse species. Although significant attention has focused on LDs in the biology of obesity, diabetes, and atherosclerosis, there is limited information on the role of LDs in pathogenic fungi. We have disrupted the Fat storage-Inducing Transmembrane (FIT) protein 2 genes of the emerging pathogenic fungus Candida parapsilosis and demonstrated that LD formation is significantly reduced in the mutant cells. Disruption of FIT2 genes also reduced accumulation of triacylglycerols. The production of other lipids such as phospholipids and steryl esters were also affected in the mutant strain. Inhibition of de novo fatty acid biosynthesis by triclosan in the FIT2 disruptants reduced fungal growth in rich medium YPD, indicating that TAGs or fatty acids from the LDs could be important for cell proliferation. FIT2 disruption was associated with enhanced sensitivity to oxidative stress. Furthermore, we showed that FIT2 deletion yeast cells were significantly attenuated in murine infection models, suggesting an involvement of LDs in the pathobiology of the fungus.  相似文献   

9.
Fat storage‐inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)‐localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension‐cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER‐LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER‐vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.  相似文献   

10.
The PAT family proteins, named after perilipin, adipophilin, and the tail-interacting protein of 47 kDa (TIP47), are implicated in intracellular lipid metabolism. They associate with lipid droplets, but how is completely unclear. From immunofluorescence studies, they are reported to be restricted to the outer membrane monolayer enveloping the lipid droplet and not to enter the core. Recently, we found another kind of lipid droplet-associated protein, caveolin-1, inside lipid droplets. Using freeze-fracture immunocytochemistry and electron microscopy, we now describe the distributions of perilipin and caveolin-1 and of adipophilin and TIP47 in lipid droplets of adipocytes and macrophages. All of these lipid droplet-associated proteins pervade the lipid droplet core and hence are not restricted to the droplet surface. Moreover, lipid droplets are surprisingly heterogeneous with respect to their complements and their distribution of lipid droplet-associated proteins. Whereas caveolin-1 is synthesized in the endoplasmic reticulum and is transferred to the lipid droplet core by inundating lipids during droplet budding, the PAT proteins, which are synthesized on free ribosomes in the cytoplasm, evidently target to the lipid droplet after it has formed. How the polar lipid droplet-associated proteins are accommodated among the essentially hydrophobic neutral lipids of the lipid droplet core remains to be determined.  相似文献   

11.
Most cells store metabolic energy in lipid droplets (LDs). LDs are composed of a hydrophobic core, covered by a phospholipid monolayer, and functionalized by a specific set of proteins. Formation of LDs takes place in the endoplasmic reticulum (ER), where neutral lipid biosynthetic enzymes are located. Recent evidence indicate that this process is confined to specific ER subdomains, where proteins meet to initiate LD assembly. The lipodystrophy protein Seipin, is emerging as a major coordinator of LD biogenesis. Seipin forms a large oligomeric toroidal structure, which traps neutral lipids to promote LD nucleation. Here, we discuss the role of LD biogenesis factors that associate with Seipin to assemble functional LDs.  相似文献   

12.
Sphingolipid activator proteins (SAPs or saposins) are essential cofactors for the lysosomal degradation of membrane-anchored sphingolipids. Four of the five known proteins of this class, SAPs A--D, derive from a single precursor protein and show high homology, whereas the fifth protein, GM2AP, is larger and displays a different secondary structure. Although the main function of all five proteins is assumed to lie in the activation of lipid degradation, their specificities and modes of action seem to differ considerably. It has recently been demonstrated that the action of the proteins is highly enhanced by the presence of acidic lipids in the target membranes. These results have some interesting implications for the topology of lysosomal degradation of lipids and may provide new insights into the function of these interesting proteins, which are ubiquitously expressed in the different tissues of the body. Recent studies indicated that the SAPs play an important role in the biogenesis of the epidermal water barrier, which has been demonstrated by the analysis of the skin phenotype displayed by SAP-knockout mice. The results obtained so far have led to some new insights into the formation of the epidermal water permeability barrier and may lead to a better understanding of this complex process.  相似文献   

13.
Davidi L  Katz A  Pick U 《Planta》2012,236(1):19-33
Many green algal species can accumulate large amounts of triacylglycerides (TAG) under nutrient deprivation, making them a potential source for production of biodiesel. TAG are organized in cytoplasmic lipid bodies, which contain a major lipid droplet protein termed MLDP. Green algae MLDP differ in sequence from plant oleosins and from animal perilipins, and their structure and function are not clear. In this study, we describe the isolation of MLDP from three species of the extreme halotolerant green algae Dunaliella. Sequence alignment with other green algae MLDP proteins identified a conserved 4-proline domain that may be considered as a signature domain of Volvocales green algae MLDP. Gold immunolabeling localized MLDP at the surface of lipid droplets in D. salina. The induction of MLDP by nitrogen deprivation is kinetically correlated with TAG accumulation, and inhibition of TAG biosynthesis impairs MLDP accumulation suggesting that MLDP induction is co-regulated with TAG accumulation. These results can lead to a better understanding of the structure and function of Volvocales green algae MLDP proteins.  相似文献   

14.
Five proteins of the perilipin (Plin) family such as Plin1 (perilipin) Plin2 (adipose differentiation-related protein), Plin3 (tail-interacting protein of 47 kDa), Plin4 (S3-12), and Plin5 (myocardial lipid droplet protein) are characterized as lipid droplet (LD) proteins in adipocytes. Recent reports have demonstrated that fat-specific protein 27 (FSP27) and hypoxia-inducible protein 2 (HIG2) are also thought to be novel LD proteins in addition to proteins of the Plin family. Growing evidence have shown that LD proteins play a role in the pathophysiology in the fatty liver disease which is characterized by hepatocytes containing LD with excessive neutral lipid. Studies showed LD proteins such as Plin1, Plin2, Plin3, Plin5, FSP27, and HIG2 are expressed in the liver steatosis. Among them, a high fat diet increases expression of Plin2 and/or FSP27 through activation of peroxisome proliferator-activated receptor γ to develop fatty liver. In this article, recent advances on the role of LD proteins in pathophysiology of fatty liver diseases are summarized.  相似文献   

15.
16.
The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3–12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.  相似文献   

17.
18.
《Cell metabolism》2021,33(8):1655-1670.e8
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   

19.
LDs (lipid droplets) carrying TAG (triacylglycerol) and cholesteryl esters are emerging as dynamic cellular organelles that are generated in nearly every cell. They play a key role in lipid and membrane homoeostasis. Abnormal LD dynamics are associated with the pathophysiology of many metabolic diseases, such as obesity, diabetes, atherosclerosis, fatty liver and even cancer. Chylomicrons, stable droplets also consisting of TAG and cholesterol are generated in the intestinal epithelium to transport exogenous (dietary) lipids after meals from the small intestine to tissues for degradation. Defective chylomicron formation is responsible for inherited lipoprotein deficiencies, including abetalipoproteinaemia, hypobetalipoproteinaemia and chylomicron retention disease. These are disorders sharing characteristics such as fat malabsorption, low levels of circulating lipids and fat-soluble vitamins, failure to thrive in early childhood, ataxic neuropathy and visual impairment. Thus understanding the molecular mechanisms governing the dynamics of LDs and chylomicrons, namely, their biogenesis, growth, maintenance and degradation, will not only clarify their molecular role, but might also provide additional indications to treatment of metabolic diseases. In this review, we highlight the role of two small GTPases [ARFRP1 (ADP-ribosylation factor related protein 1) and ARL1 (ADP-ribosylation factor-like 1)] and their downstream targets acting on the trans-Golgi (Golgins and Rab proteins) on LD and chylomicron formation.  相似文献   

20.
Cholesteryl ester (CE)-rich lipid droplets (LDs) accumulate in steroidogenic tissues under physiological conditions and constitute an important source of cholesterol as the precursor for the synthesis of all steroid hormones. The mechanisms specifically involved in CE-rich LD formation have not been directly studied and are assumed by most to occur in a fashion analogous to triacylglycerol-rich LDs. Seipin is an endoplasmic reticulum protein that forms oligomeric complexes at endoplasmic reticulum-LD contact sites, and seipin deficiency results in severe alterations in LD maturation and morphology as seen in Berardinelli-Seip congenital lipodystrophy type 2. While seipin is critical for triacylglycerol-rich LD formation, no studies have directly addressed whether seipin is important for CE-rich LD biogenesis. To address this issue, mice with deficient expression of seipin specifically in adrenal, testis, and ovary, steroidogenic tissues that accumulate CE-rich LDs under normal physiological conditions, were generated. We found that the steroidogenic-specific seipin-deficient mice displayed a marked reduction in LD and CE accumulation in the adrenals, demonstrating the pivotal role of seipin in CE-rich LD accumulation/formation. Moreover, the reduction in CE-rich LDs was associated with significant defects in adrenal and gonadal steroid hormone production that could not be completely reversed by addition of exogenous lipoprotein cholesterol. We conclude that seipin has a heretofore unappreciated role in intracellular cholesterol trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号