首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Zhang X  Berger FG  Yang J  Lu X 《The EMBO journal》2011,30(11):2177-2189
Tumour suppressor p53 levels in the cell are tightly regulated by controlled degradation through ubiquitin ligases including Mdm2, COP1, Pirh2, and ARF-BP1. The ubiquitination process is reversible via deubiquitinating enzymes, such as ubiquitin-specific peptidases (USPs). In this study, we identified ubiquitin-specific peptidase 4 (USP4) as an important regulator of p53. USP4 interacts directly with and deubiquitinates ARF-BP1, leading to the stabilization of ARF-BP1 and subsequent reduction of p53 levels. Usp4 knockout mice are viable and developmentally normal, but showed enhanced apoptosis in thymus and spleen in response to ionizing radiation. Compared with wild-type mouse embryonic fibroblasts (MEFs), Usp4-/- MEFs exhibited retarded growth, premature cellular senescence, resistance to oncogenic transformation, and hyperactive DNA damage checkpoints, consistent with upregulated levels and activity of p53 in the absence of USP4. Finally, we showed that USP4 is overexpressed in several types of human cancer, suggesting that USP4 is a potential oncogene.  相似文献   

4.
Many cancer drugs have been developed to control tumor growth by inducing cancer cell apoptosis. However, several intracellular barriers could fail this attempt. One of these barrier is high expression of survivin. Survivin can interfere caspase activation and thereby abort apoptosis. In this study, we found that CCN1 suppressed the survivin expression in tumor cells of esophageal adenocarcinoma (EAC) and thus allowed apoptosis to finish. Furthermore, we demonstrated that this downregulation was dependent on p53 phosphorylation at Ser20, and CCN1 induced EAC cell apoptosis through the activation of p53.  相似文献   

5.
Osteosarcoma is a highly invasive primary malignancy of bone. Magnolol is biologically active, which shows antitumor effects in a variety of cancer cell lines. However, it has not been elucidated magnolol's effects on human osteosarcoma cells (HOC). This study aimed to determine antitumor activity of magnolol and illustrate the molecular mechanism in HOC. Magnolol showed significant inhibition effect of growth on MG-63 and 143B cells and induced apoptosis and cell cycle arrest at G0/G1. In osteosarcoma cells, magnolol upregulated expressions of proapoptosis proteins and suppressed expressions of antiapoptosis proteins. Additionally, under the pretreatment of pifithrin-a (PFT-a, a p53 inhibitor), the magnolol-induced apoptosis was significantly reversed. The results above indicated that magnolol induces apoptosis in osteosarcoma cells may via G0/G1 phase arrest and p53-mediated mitochondrial pathway.  相似文献   

6.
7.
《Free radical research》2013,47(6):728-734
Abstract

p53 plays a major role in apoptosis through activation of pro-apoptotic gene Bax. It also regulates apurinic/apyrimidinic endonuclease (APE) expression in the base excision repair pathway against oxidative DNA damages. This study investigated whether p53-dependent apoptosis is correlated with APE using an experimental rat model of hydronephrosis. Hydronephrosis was induced by partial ligation of the right ureter. Animals were sacrificed on scheduled time after unilateral ureteral obstruction and the expression of 8-OHdG, γ-H2AX, apoptotic proteins and APE was determined. The accumulated p53 activated Bax and caspase-3 7 days after hydronephrosis induction and the resulting high levels of p53-dependent apoptotic proteins and γ-H2AX tended to decrease APE. The intensities of 8-OHdG and caspase-3 immunolocalization significantly increased in obstructed kidneys than in sham-operated kidneys, although APE immunoreactivity increased after hydronephrosis induction. These results suggest that oxidative DNA damages in obstructed kidneys may trigger p53-dependent apoptosis through repression of APE.  相似文献   

8.
Lysosomal regulation is a poorly understood mechanism that is central to degradation and recycling processes. Here we report that LAMTOR1 (late endosomal/lysosomal adaptor, MAPK and mTOR activator 1) downregulation affects lysosomal activation, through mechanisms that are not solely due to mTORC1 inhibition. LAMTOR1 depletion strongly increases lysosomal structures that display a scattered intracellular positioning. Despite their altered positioning, those dispersed structures remain overall functional: (i) the trafficking and maturation of the lysosomal enzyme cathepsin B is not altered; (ii) the autophagic flux, ending up in the degradation of autophagic substrate inside lysosomes, is stimulated. Consequently, LAMTOR1-depleted cells face an aberrant lysosomal catabolism that produces excessive reactive oxygen species (ROS). ROS accumulation in turn triggers p53-dependent cell cycle arrest and apoptosis. Both mTORC1 activity and the stimulated autophagy are not necessary to this lysosomal cell death pathway. Thus, LAMTOR1 expression affects the tuning of lysosomal activation that can lead to p53-dependent apoptosis through excessive catabolism.  相似文献   

9.
10.
Kuo YC  Kuo PL  Hsu YL  Cho CY  Lin CC 《Life sciences》2006,78(22):2550-2557
Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole), one of the simplest naturally occurring alkaloids, was isolated from the leaves of the evergreen tree Ochrosia elliptica Labill (Apocynaceae). Here, we reported that ellipticine inhibited the cell growth of human hepatocellular carcinoma cell line HepG2 and provided molecular understanding of this effect. The XTT assay results showed that ellipticine decreased the cell viability of HepG2 cells in a dose- and time-dependent manner, and the IC50 value was 4.1 microM. Furthermore, apoptosis induction by ellipticine in HepG2 cells was verified by the appearance of DNA fragmentation and annexin V-FITC/propidium iodide (PI) staining assay. Ellipticine treatment was found to result in the upregulation of p53, Fas/APO-1 receptor and Fas ligand. Besides, ellipticine also initiated mitochondrial apoptotic pathway through regulation of Bcl-2 family proteins expression, alteration of mitochondrial membrane potential (DeltaPsim), and activation of caspase-9 and caspase-3. Taken together, ellipticine decreased the cell growth and induced apoptosis in HepG2 cell.  相似文献   

11.
12.
13.
SirT1 fails to affect p53-mediated biological functions   总被引:3,自引:0,他引:3  
  相似文献   

14.
The high-mobility group A (HMGA) proteins are a family of non-histone chromatin factors, encoded by the HMGA1 and HMGA2 genes. Several studies demonstrate that HMGA proteins have a critical role in neoplastic transformation, and their overexpression is mainly associated with a highly malignant phenotype, also representing a poor prognostic index. Even though a cytoplasmic localization of these proteins has been previously reported in some highly malignant neoplasias, a clear role for this localization has not been defined. Here, we first confirm the localization of the HMGA1 proteins in the cytoplasm of cancer cells, and then we report a novel mechanism through which HMGA1 inhibits p53-mitochondrial apoptosis by counteracting the binding of p53 to the anti-apoptotic factor Bcl-2. Indeed, we demonstrate a physical and functional interaction between HMGA1 and Bcl-2 proteins. This interaction occurs at mitochondria interfering with the ability of p53 protein to bind Bcl-2, thus counteracting p53-mediated mitochondrial apoptosis. This effect is associated with the inhibition of cytochrome c release and activation of caspases. Consistent with this mechanism, a strong correlation between HMGA1 cytoplasmic localization and a more aggressive histotype of thyroid, breast and colon carcinomas has been observed. Therefore, cytoplasmic localization of HMGA1 proteins in malignant tissues is a novel mechanism of inactivation of p53 apoptotic function.  相似文献   

15.
Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.  相似文献   

16.
Yuan L  Tian C  Wang H  Song S  Li D  Xing G  Yin Y  He F  Zhang L 《EMBO reports》2012,13(4):363-370
The KRAB-type zinc-finger protein Apak was recently identified as a negative regulator of p53-mediated apoptosis. However, the mechanism of this selective regulation is not fully understood. Here, we show that Apak recognizes the TCTTN2−30TTGT consensus sequence through its zinc-fingers. This sequence is specifically found in intron 1 of the proapoptotic p53 target gene p53AIP1 and largely overlaps with the p53-binding sequence. Apak competes with p53 for binding to this site to inhibit p53AIP1 expression. Upon DNA damage, Apak dissociates from the DNA, which abolishes its inhibitory effect on p53-mediated apoptosis.  相似文献   

17.
18.
Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells   总被引:13,自引:0,他引:13  
Shieh DE  Chen YY  Yen MH  Chiang LC  Lin CC 《Life sciences》2004,74(18):2279-2290
Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible cells. However, the signaling pathway of their apoptotic effects remains undefined. In this study, the cytotoxic effect of emodin on various human hepatoma cell lines was investigated. Results demonstrated that emodin exhibited strongly suppressing effect on HepG2/C3A, PLC/PRF/5, and SK-HEP-1 cells, with the IC(50) value of 42.5, 46.6, and 53.1 microM, respectively. Furthermore, emodin induced apoptosis in HepG2/C3A cells was clearly verified by the appearance of DNA fragmentation and sub-G(1) accumulation. Besides, HepG2/C3A cells were found to be arrested in G(2)/M phase after the cells were treated with 60 microM emodin for 48 h. Moreover, significant increase in the levels of apoptosis-related signals such as p53 (419.3 pg/ml), p21 (437.4 units/ml), Fas (6.6 units/ml), and caspase-3 (35.4 pmol/min) were observed in emodin treated HepG2/C3A cells. Taken together, emodin displays effective inhibitory effects on the growth of various human hepatoma cell lines and stimulates the expression of p53 and p21 that resulted in the cell cycle arrest of HepG2/C3A cells at G(2)/M phase. Results also suggest that emodin-induced apoptosis in HepG2/C3A cells were mediated through the activation of p53, p21, Fas/APO-1, and caspase-3. It implies that emodin could be a useful chemotherapeutical agent for treatment of hepatocellular carcinoma (HCC).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号