首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we describe a novel strategy for mitigation of ionizing radiation-induced hematopoietic syndrome by suppressing the activity of MKP3, resulting in ERK activation and enhanced abundance of hematopoietic stem cells, using the antioxidant flavonoid baicalein (5,6,7-trihydroxyflavone). It offered complete protection to mouse splenic lymphocytes against radiation-induced cell death. Inhibitors of ERK and Nrf-2 could significantly abrogate baicalein-mediated radioprotection in lymphocytes. Baicalein inhibited phosphatase MKP3 and thereby enhanced phosphorylation of ERK and its downstream proteins such as Elk and Nrf-2. It also increased the nuclear levels of Nrf-2 and the mRNA levels of its dependent genes. Importantly, baicalein administration to mice before radiation exposure led to significant recovery of loss of bone marrow cellularity and also inhibited cell death. Administration of baicalein increased the hematopoietic stem cell frequency as measured by side-population assay and also by antibody staining. Further, baicalein offered significant protection against whole-body irradiation (WBI; 7.5 Gy)-induced mortality in mice. Interestingly, we found that baicalein works by activating the same target molecules ERK and Nrf-2 both in vitro and in vivo. Finally, administration of all-trans-retinoic acid (inhibitor of Nrf-2) significantly abrogated baicalein-mediated protection against WBI-induced mortality in mice. Thus, in contrast to the generalized conception of antioxidants acting as radioprotectors, we provide a rationale that antioxidants exhibit pleiotropic effects through the activation of multiple cellular signaling pathways.  相似文献   

2.
Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure.  相似文献   

3.
Summary The potential of chlorophyllin in reducing clastogenicity was studied against two concentrations of each of three potent metallic clastogens (cesium chloride, mercuric chloride and cobalt chloride) in bone marrow cells of mice in vivo. The respective salts and chlorophyllin were administered orally to mice by gavaging in different combinations. Simultaneous administration of chlorophyllin with both concentrations of each salt reduced the clastogenic effects in the order Cs > Hg > Co. Chlorophyllin could not decrease the clastogenic effects when administered 2 h before the salts.  相似文献   

4.
I G Tsyrlova 《Ontogenez》1991,22(2):152-158
Hemopoietic stem cell (CFUs) proliferation is controlled by regulatory activities (stimulator and inhibitor) produced by bone marrow macrophages. Previously it has been shown that antigen administration stimulates CFUs proliferation. The data obtained in this study show the possible mechanism of antigen-induced stimulation of CFUs proliferation. 3-4 days after antigen injection bone marrow cells of BDF1 mice cease to produce inhibitory activity in contrast to similar cells of control animals. Therefore, increased CFUs proliferation in immunized mice can be due to decreased production of inhibitory activity and resulting abundance of stimulating factors. In BAlB/c mice CFUs proliferation is not changed after antigen injection and their bone marrow cells continue to synthesize inhibitory substances. Differentiation of CFUs into committed blood precursor cells may depend on the proliferation level in CFUs population since activation of CFUs proliferation in immunized BDF1 mice is accompanied by a decreased number of CFU-GM and CFU-M but an increased number of BFU-E. It should be noted that intact BAlB/c mice show a high level of CFUs proliferation similar to that of immunized BDF1 mice.  相似文献   

5.
《Free radical research》2013,47(11):1344-1361
Abstract

Protection of γ-ray-induced injury in hematopoietic and gastrointestinal (GI) systems is the rationale behind developing radioprotectors. The objective of this study, therefore, was to investigate the radioprotective efficacy and mechanisms underlying sesamol in amelioration of γ-ray-induced hematopoietic and GI injury in mice. C57BL/6 male mice were pre-treated with a single dose (100 or 50 mg/kg, 30 min prior) of sesamol through the intraperitoneal route and exposed to LD50/30 (7.5 Gy) and sublethal (5 Gy) dose of γ-radiation. Thirty-day survival against 7.5 Gy was monitored. Sesamol (100 mg/kg) pre-treatment reduced radiation-induced mortality and resulted survival of about 100% against 7.5 Gy of γ-irradiation. Whole-body irradiation drastically depleted hematopoietic progenitor stem cells in bone marrow, B cells, T cell subpopulations, and splenocyte proliferation in the spleen on day 4, which were significantly protected in sesamol pre-treated mice. This was associated with a decrease of radiation-induced micronuclei (MN) and apoptosis in bone marrow and spleen, respectively. Sesamol pre-treatment inhibited lipid peroxidation, translocation of gut bacteria to spleen, liver, and kidney, and enhanced regeneration of crypt cells in the GI system. In addition, sesamol pre-treatment reduced the radiation-induced pattern of expression of p53 and Bax apoptotic proteins in the bone marrow, spleen, and GI. This reduction in apoptotic proteins was associated with the increased anti-apoptotic-Bcl-x and PCNA proteins. Further, assessment of antioxidant capacity using ABTS and DPPH assays revealed that sesamol treatment alleviated total antioxidant capacity in spleen and GI tissue. In conclusion, the results of the present study suggested that sesamol as a single prophylactic dose protects hematopoietic and GI systems against γ-radiation-induced injury in mice.  相似文献   

6.
Radiation exposure induces acute myeloid leukemia (AML) in humans and mice. Recent studies postulated that AML stem cells of spontaneous human AML arise from hematopoietic stem cells. However, other studies support the possibility that short-lived committed progenitors transform into AML stem cells, accompanied by a particular gene mutation. It remains unclear whether AML stem cells are present in radiation-induced AML, and information regarding AML-initiating cells is lacking. In this study, we identified and analyzed AML stem cells of mice with radiation-induced AML. The AML stem cells were identified by transplanting 100 bone marrow cells from mice with radiation-induced AML. We injected 100 cells of each of seven cell populations corresponding to different stages of hematopoietic cell differentiation and compared the latencies of AMLs induced in recipient mice. The identified radiation-induced AML stem cells frequently displayed similarities in both CD antigen and gene expression profiles with normal common myeloid progenitors. The number of common myeloid progenitor-like AML stem cells was significantly increased in mice with radiation-induced AML, but the progeny of common myeloid progenitors was decreased. In addition, analysis of radiation effects on the hematopoietic system showed that common myeloid progenitor cells were extremely radiosensitive and that their numbers remained at low levels for more than 2?months after radiation exposure. Our results suggest that murine radiation-induced AML stem cells arise from radiosensitive cells at a common myeloid progenitor stage.  相似文献   

7.
The bone marrow (BM) is an essential organ for hematopoiesis in adult, in which proliferation and differentiation of hematopoietic stem/progenitor cells (HSPC) is orchestrated by various stromal cells. Alterations of BM hematopoietic environment lead to various hematopoietic disorders as exemplified by the linking of fatty marrow with increased adipogenesis to anemia or pancytopenia. Therefore, the composition of mesenchymal stromal cell (MSC)-derived cells in the BM could be crucial for proper hematopoiesis, but the mechanisms underlying the MSC differentiation for hematopoiesis remain poorly understood. In this study, we show that Oncostatin M (OSM) knock out mice exhibited pancytopenia advancing fatty marrow with age. OSM strongly inhibited adipogenesis from BM MSC in vitro, whereas it enhanced their osteogenesis but suppressed the terminal differentiation. Intriguingly, OSM allowed the MSC-derived cells to support the ex vivo expansion of HSPC effectively as feeder cells. Furthermore, the administration of OSM in lethally irradiated wild-type mice blocked fatty marrow and enhanced the recovery of HSPC number in the BM and peripheral blood cells after engraftment of HSPC. Collectively, OSM plays multiple critical roles in the maintenance and development of the hematopoietic microenvironment in the BM at a steady state as well as after injury.  相似文献   

8.
Monocytosis and neutrophilia are frequent events in atherosclerosis. These phenomena arise from the increased proliferation of hematopoietic stem and multipotential progenitor cells (HSPCs) and HSPC mobilization from the bone marrow to other immune organs and circulation. High cholesterol and inflammatory signals promote HSPC proliferation and preferential differentiation to the myeloid precursors (i.e., myelopoiesis) that than give rise to pro‐inflammatory immune cells. These cells accumulate in the plaques thereby enhancing vascular inflammation and contributing to further lesion progression. Studies in animal models of atherosclerosis showed that manipulation with HSPC proliferation and differentiation through the activation of LXR‐dependent mechanisms and restoration of cholesterol efflux may have a significant therapeutic potential.  相似文献   

9.
The contribution of hyaluronan (HA) to the regulatory network of the hematopoietic microenvironment was studied using knock-out mice of three hyaluronan synthase genes (Has1, Has2, and Has3). The number of hematopoietic progenitors was decreased in bone marrow and increased in extramedullary sites of Prx1-Cre;Has2(flox/flox);Has1(-/-);Has3(-/-) triple knock-out (tKO) mice as compared with wild type (WT) and Has1(-/-);Has3(-/-) double knock-out (dKO) mice. In line with this observation, decreased hematopoietic activity was observed in long term bone marrow cultures (LTBMC) from tKO mice, whereas the formation of the adherent layer and generation of hematopoietic cells in WT and dKO cultures was not different. 4-Methylumbelliferone (4MU) was used to pharmacologically inhibit the production of HA in LTBMC. Treatment with 4MU inhibited HA synthesis, decreased expression of HAS2 and HAS3, and eliminated hematopoiesis in LTBMC, and this effect was alleviated by the addition of exogenous HA. Exogenous HA also augmented the cell motility in LTBMC, which correlated with the HA-stimulated production of chemokines and growth factors. Conditioned media from HA-induced LTBMC enhanced the chemotaxis of hematopoietic stem/progenitor cells (HSPC) in response to SDF-1. Exposure of endothelial cells to 4MU decreased their ability to support HSPC rolling and adhesion. In addition, migration of transplanted HSPC into the marrow of 4MU-pretreated mice was lower than in untreated mice. Collectively, the results suggest that HA depletion reduces the ability of the microenvironment to support HSPC, and confirm a role for HA as a necessary regulatory element in the structure of the hematopoietic microenvironment.  相似文献   

10.
Wang Y  Liu L  Zhou D 《Radiation research》2011,176(6):743-752
Exposure to a moderate or high total-body dose of radiation induces not only acute bone marrow suppression but also residual (or long-term) bone marrow injury. The induction of residual bone marrow injury is primarily attributed to the induction of hematopoietic cell senescence by ionizing radiation. However, the mechanisms underlying radiation-induced hematopoietic cell senescence are not known and thus were investigated in the present study. Using a well-established long-term bone marrow cell culture system, we found that radiation induced hematopoietic cell senescence at least in part via activation of p38 mitogen-activated protein kinase (p38). This suggestion is supported by the finding that exposure to radiation selectively activated p38 in bone marrow hematopoietic cells. The activation was associated with a significant reduction in hematopoietic cell clonogenic function, an increased expression of p16(INK4a) (p16), and an elevated senescence-associated β-galactosidase (SA-β-gal) activity. All these changes were attenuated by p38 inhibition with a specific p38 inhibitor, SB203580 (SB). Selective activation of p38 was also observed in bone marrow hematopoietic stem cells (HSCs) after mice were exposed to a sublethal total-body dose (6.5 Gy) of radiation. Treatment of the irradiated mice with SB after total-body irradiation (TBI) increased the frequencies of HSCs and hematopoietic progenitor cells (HPCs) in their bone marrow and the clonogenic functions of the irradiated HSCs and HPCs. These findings suggest that activation of p38 plays a role in mediating radiation-induced hematopoietic cell senescence and residual bone marrow suppression.  相似文献   

11.
12.
Changes in the pool of haemopoietic colony-forming units (CFUs) of bone marrow and spleen were studied in experiments with mice fed dried thyroid gland (TH) for 21 days, and during the 13 days that followed feeding. After HU treatment, the number of CFUs in DNA synthesis was estimated. As early as the second day of TH treatment, the pool of CFUs is gradually increased, leading to an increase in the total number of splenic and bone marrow CFUs persisting after TH treatment for the period examined. Simultaneously, the numbers of nucleated cells in the bone marrow and spleen are increased. During TH feeding and following its termination, the total number of erythrocytes and the haematocrit values did not change significantly, whereas an increased number of leucocytes was observed in the peripheral blood after TH treatment. Elevation of the proliferative activity of CFUs occurred early in the period of TH treatment, with the maximum attained by end of the first week of TH feeding. This suggests a rapid response of the haemopoietic stem cell compartment to the administration of TH hormones. the participation of humoral factors controlling CFUs compartments in the mechanism of the stimulatory effect of TH hormones on haemopoietic stem cells is discussed.  相似文献   

13.
Nicaraven, a chemically synthesized hydroxyl radical-specific scavenger, has been demonstrated to protect against ischemia-reperfusion injury in various organs. We investigated whether nicaraven can attenuate radiation-induced injury in hematopoietic stem/progenitor cells, which is the conmen complication of radiotherapy and one of the major causes of death in sub-acute phase after accidental exposure to high dose radiation. C57BL/6 mice were exposed to 1 Gy γ-ray radiation daily for 5 days in succession (a total of 5 Gy), and given nicaraven or a placebo after each exposure. The mice were sacrificed 2 days after the last radiation treatment, and the protective effects and relevant mechanisms of nicaraven in hematopoietic stem/progenitor cells with radiation-induced damage were investigated by ex vivo examination. We found that post-radiation administration of nicaraven significantly increased the number, improved the colony-forming capacity, and decreased the DNA damage of hematopoietic stem/progenitor cells. The urinary levels of 8-oxo-2′-deoxyguanosine, a marker of DNA oxidation, were significantly lower in mice that were given nicaraven compared with those that received a placebo treatment, although the levels of intracellular and mitochondrial reactive oxygen species in the bone marrow cells did not differ significantly between the two groups. Interestingly, compared with the placebo treatment, the administration of nicaraven significantly decreased the levels of the inflammatory cytokines IL-6 and TNF-α in the plasma of mice. Our data suggest that nicaraven effectively diminished the effects of radiation-induced injury in hematopoietic stem/progenitor cells, which is likely associated with the anti-oxidative and anti-inflammatory properties of this compound.  相似文献   

14.
15.
Solid tumors are composed of cancerous cells and non-cancerous stroma. A better understanding of the tumor stroma could lead to new therapeutic applications. However, the exact compositions and functions of the tumor stroma are still largely unknown. Here, using a Lewis lung carcinoma implantation mouse model, we examined the hematopoietic compartments in tumor stroma and tumor-bearing mice. Different lineages of differentiated hematopoietic cells existed in tumor stroma with the percentage of myeloid cells increasing and the percentage of lymphoid and erythroid cells decreasing over time. Using bone marrow reconstitution analysis, we showed that the tumor stroma also contained functional hematopoietic stem cells. All hematopoietic cells in the tumor stroma originated from bone marrow. In the bone marrow and peripheral blood of tumor-bearing mice, myeloid populations increased and lymphoid and erythroid populations decreased and numbers of hematopoietic stem cells markedly increased with time. To investigate the function of hematopoietic cells in tumor stroma, we co-implanted various types of hematopoietic cells with cancer cells. We found that total hematopoietic cells in the tumor stroma promoted tumor development. Furthermore, the growth of the primary implanted Lewis lung carcinomas and their metastasis were significantly decreased in mice reconstituted with IGF type I receptor-deficient hematopoietic stem cells, indicating that IGF signaling in the hematopoietic tumor stroma supports tumor outgrowth. These results reveal that hematopoietic cells in the tumor stroma regulate tumor development and that tumor progression significantly alters the host hematopoietic compartment.  相似文献   

16.
Leukotactin-1 (Lkn-1), a human CC chemokine, has been demonstrated to induce chemotaxis of neutrophils, monocytes, eosinophils and lymphocytes and has been shown to suppress colony formation of hematopoietic stem and progenitor cells (HSPC)in vitro andin vivo. The temporal suppression of HSPC by chemokines could potentially be applicable for various indications, such as the protection of HSPC from the several anti-proliferating chemotherapeutics in cancer treatments. In order to evaluate the protective effects on myeloid progenitor cells, the recombinant Lkn-1 was produced byPichia pastoris and tested with cyclophosphamide, cytotoxic chemotherapeutics. The pretreatment of Lkn-1 increased the number of HSPC in bone marrow as well as the potency of resulting progenitor cells after the treatment of cyclophosphamide. After the first cycle of cyclophosphamide treatment these protections of HSPC correlated with the increased number of white blood cells and neutrophils in the peripheral blood. In lethal conditions created by the repeated aministration of cyclophosphamide, the treatment of Lkn-1 enhanced the survival of mice, suggesting the potential use of Lkn-1 as the protective agent for HSPC from various cytotoxic insults.  相似文献   

17.
The hematopoietic stem and progenitor cell (HSPC) compartment is subject to extensive quantitative genetic variation. We have previously shown that TGF-beta2 at low concentrations enhances flt3 ligand-induced growth of HSPCs, while it is potently antiproliferative at higher concentrations. This in vitro enhancing effect was subject to quantitative genetic variation, for which a quantitative trait locus (QTL) was tentatively mapped to chromosome 4 (chr.4). Tgfb2(+/-) mice have a smaller and more slowly cycling HSPC compartment, which has a decreased serial repopulation capacity, and are less susceptible to the lethal effect of high doses of 5-fluorouracil. To unequivocally demonstrate that these phenotypes can be attributed to the enhancing effect of TGF-beta2 on HSPC proliferation observed in vitro and are therefore subject to mouse strain-dependent variation as well, we generated congenic mice where the telomeric region of chr.4 was introgressed from DBA/2 into C57BL/6 mice. In these mice, the enhancing effect of TGF-beta2 on flt3 signaling, but not the generic antiproliferative effect of high concentrations of TGF-beta2, was abrogated, confirming the location of this QTL, which we named tb2r1, on chr.4. These mice shared a smaller and more slowly cycling HSPC compartment and increased 5-fluorouracil resistance but not a decreased serial repopulation capacity with Tgfb2(+/-) mice. The concordance of phenotypes between Tgfb2(+/-) and congenic mice indicates that HSPC frequency and cycling are regulated by tb2r1, while an additional QTL in the telomeric region of chr.4 may regulate the serial repopulation capacity of hematopoietic stem cells.  相似文献   

18.
It was investigated the functional status of stem cell pool (CFUs) of bone marrow, spleen and peripheral blood in mice (CBA) in early (1-30 days) and late (180-360 days) period after acute intake of 90Sr (29.6 kBq/g). Cumulative dose in red bone marrow due to incorporated 90Sr was 0.98-87.7 Gy. The kinetics, proliferative and differentiative potential of stem hemopoietic cells (CFUs) and productivity of hemopoietic tissues were significantly influenced by dose rate, absorbed dose and degree of suppresssion of bone marrow functions.The obtained results indicated that the sarcomogenous doses of 90Sr (29.6 kBq/g) resulted in realization of compensatory reactions in hemopoietic stem cell pool to support the life ability of irradiated animals: higher proliferative potential of CFUs and its repopulation, redistribution of cell subpopulations during differentiation and activation of spleens hemopoiesis.  相似文献   

19.
Gene expression profiling demonstrated that components of the cholinergic system, including choline acetyltransferase, acetylcholinesterase and nicotinic acetylcholine receptors (nAChRs), are expressed in embryonic stem cells and differentiating embryoid bodies (EBs). Triggering of nAChRs expressed in EBs by nicotine resulted in activation of MAPK and shifts of spontaneous differentiation toward hemangioblast. In vivo, non-neural nAChRs are detected early during development in fetal sites of hematopoiesis. Similarly, in vivo exposure of the developing embryo to nicotine resulted in higher numbers of hematopoietic progenitors in fetal liver. However postpartum, the number of hematopoietic stem/progenitor cells (HSPC) was decreased, suggesting an impaired colonization of the fetal bone marrow with HSPCs. This correlated with increased number of circulating HSPC and decreased expression of CXCR4 that mediates migration of circulating cells into the bone marrow regulatory niche. In addition, protein microarrays demonstrated that nicotine changed the profile of cytokines produced in the niche. While the levels of IL1alpha, IL1beta, IL2, IL9 and IL10 were not changed, the production of hematopoiesis-supportive cytokines including G-CSF, GM-CSF, IL3, IL6 and IGFBP-3 was decreased. This correlated with the decreased repopulating ability of HSPC in vivo and diminished hematopoietic activity in bone marrow cultures treated with nicotine. Interestingly, nicotine stimulated the production of IL4 and IL5, implying a possible role of the cholinergic system in pathogenesis of allergic diseases. Our data provide evidence that the nicotine-induced imbalance of the cholinergic system during gestation interferes with normal development and provides the basis for negative health outcomes postpartum in active and passive smokers.  相似文献   

20.
Infection with a variety of bacterial pathogens results in hematopoietic stem and progenitor cell (HSPC) mobilization. The mechanism and kinetics of HSPC mobilization during infection are largely unknown. Previously, we found altered HSPC activity in bone marrow, spleen and blood during infection with Anaplasma phagocytophilum, the agent of granulocytic anaplasmosis. We hypothesized that altered CXCL12/CXCR4 signaling, a central pathway for HSPC homing to, and retention within, the bone marrow, plays a role in infection-induced alterations in HSPC number and trafficking. Mice were infected with A. phagocytophilum. Lineage-cKit+ HSPCs were enumerated and proliferation determined. CXCL12 and CXCR4 mRNA were quantified along with CXCL12 protein, and CXCR4 surface, intracellular and total protein expression in HSPCs was determined. Increased bone marrow proliferation of HSPCs began at 2 d post-infection followed by HSPC mobilization and splenic homing. Proliferation of resident HSPCs contributed to increased splenic HSPC numbers. Bone marrow CXCL12 mRNA and protein levels were decreased at 4-8 d post-infection concurrent with HSPC mobilization. CXCR4 protein parameters were decreased in bone marrow HSPCs throughout 2-6 d post-infection. Reduction of CXCL12/CXCR4 signaling simultaneously occurs with HSPC mobilization from bone marrow. Findings suggest that deranged CXCL12/CXCR4 signaling plays a causal role in HSPC mobilization during acute A. phagocytophilum infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号