首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
To examine the role of intracellular labile iron pool (LIP), ferritin (Ft), and antioxidant defence in cellular resistance to oxidative stress on chronic adaptation, a new H2O2-resistant Jurkat T cell line “HJ16” was developed by gradual adaptation of parental “J16” cells to high concentrations of H2O2. Compared to J16 cells, HJ16 cells exhibited much higher resistance to H2O2-induced oxidative damage and necrotic cell death (up to 3 mM) and had enhanced antioxidant defence in the form of significantly higher intracellular glutathione and mitochondrial ferritin (FtMt) levels as well as higher glutathione-peroxidase (GPx) activity. In contrast, the level of the Ft H-subunit (FtH) in the H2O2-adapted cell line was found to be 7-fold lower than in the parental J16 cell line. While H2O2 concentrations higher than 0.1 mM fully depleted the glutathione content of J16 cells, in HJ16 cells the same treatments decreased the cellular glutathione content to only half of the original value. In HJ16 cells, H2O2 concentrations higher than 0.1 mM increased the level of FtMt up to 4-fold of their control values but had no effect on the FtMt levels in J16 cells. Furthermore, while the basal cytosolic level of LIP was similar in both cell lines, H2O2 treatment substantially increased the cytosolic LIP levels in J16 but not in HJ16 cells. H2O2 treatment also substantially decreased the FtH levels in J16 cells (up to 70% of the control value). In contrast in HJ16 cells, FtH levels were not affected by H2O2 treatment. These results indicate that chronic adaptation of J16 cells to high concentrations of H2O2 has provoked a series of novel and specific cellular adaptive responses that contribute to higher resistance of HJ16 cells to oxidative damage and cell death. These include increased cellular antioxidant defence in the form of higher glutathione and FtMt levels, higher GPx activity, and lower FtH levels. Further adaptive responses include the significantly reduced cellular response to oxidant-mediated glutathione depletion, FtH modulation, and labile iron release and a significant increase in FtMt levels following H2O2 treatment.  相似文献   

2.
Several neurodegenerative diseases and brain injury involve reactive oxygen species and implicate oxidative stress in disease mechanisms. Hydrogen peroxide (H2O2) formation due to mitochondrial superoxide leakage perpetuates oxidative stress in neuronal injury. Catalase, an H2O2-degrading enzyme, thus remains an important antioxidant therapy target. However, catalase therapy is restricted by its labile nature and inadequate delivery. Here, a nanotechnology approach was evaluated using catalase-loaded, poly(lactic co-glycolic acid) nanoparticles (NPs) in human neuronal protection against oxidative damage. This study showed highly efficient catalase encapsulation capable of retaining∼99% enzymatic activity. NPs released catalase rapidly, and antioxidant activity was sustained for over a month. NP uptake in human neurons was rapid and nontoxic. Although human neurons were highly sensitive to H2O2, NP-mediated catalase delivery successfully protected cultured neurons from H2O2-induced oxidative stress. Catalase-loaded NPs significantly reduced H2O2-induced protein oxidation, DNA damage, mitochondrial membrane transition pore opening and loss of cell membrane integrity and restored neuronal morphology, neurite network and microtubule-associated protein-2 levels. Further, catalase-loaded NPs improved neuronal recovery from H2O2 pre-exposure better than free catalase, suggesting possible applications in ameliorating stroke-relevant oxidative stress. Brain targeting of catalase-loaded NPs may find wide therapeutic applications for oxidative stress-associated acute and chronic neurodegenerative disorders.  相似文献   

3.
Iron-sufficient Azotobacter salinestris cells bound large amounts of 55Fe to cell-associated catechol melanin in an energy-independent manner. Iron was mobilized from the cell surface by citric acid and transported into the cell in a process that was inhibited by azide, carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), KCl or RbCl, the latter two known to inhibit Na+-dependent activities in A. salinestris. Iron-limited cells produced a hydroxamate compound (HDX) which promoted 55Fe-uptake into iron-limited cells in a two step process. Initial uptake was inhibited by azide or CCCP, but not by KCl, while subsequent uptake was blocked by all inhibitors. Citric acid also mediated energy-dependent 55Fe-uptake in iron-limited cells, but initial iron-uptake was less sensitive to CCCP than HDX-mediated iron-uptake. The results show that melanin serves as an iron trap, probably to protect the cells from oxidative damage mediated by H2O2 and the Fenton reaction. A model for HDX siderophore-mediated iron-uptake is proposed which requires energy to concentrate iron in the periplasm and H+/Na+-dependent events to bring iron into the cell.  相似文献   

4.
Sesquiterpenes have attracted much interest with respect to their protective effect against oxidative damage that may be the cause of many diseases including several neurodegenerative disorders and cancer. Our previous unpublished work suggested that cyclosativene (CSV), a tetracyclic sesquiterpene, has antioxidant and anticarcinogenic features. However, little is known about the effects of CSV on oxidative stress induced neurotoxicity. We used hydrogen peroxide (H2O2) exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of CSV in H2O2-induced toxicity in new-born rat cerebral cortex cell cultures for the first time. For this aim, MTT and lactate dehydrogenase release assays were carried out to evaluate cytotoxicity. Total antioxidant capacity (TAC) and total oxidative stress (TOS) parameters were used to evaluate oxidative changes. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels, the single cell gel electrophoresis (or Comet assay) was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Our results showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage (Comet assay) increased in the H2O2 alone treated cultures. But pre-treatment of CSV suppressed the cytotoxicity, genotoxicity and oxidative stress which were increased by H2O2. On the basis of these observations, it is suggested that CSV as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative disorders.  相似文献   

5.
Hepcidin mediated ferroportin (Fpn) degradation in macrophages is a well adopted strategy to limit iron availability towards invading pathogens. Leishmania donovani (LD), a protozoan parasite, resides within macrophage and competes with host for availing iron. Using in vitro and in vivo model of infection, we reveal that LD decreases Fpn abundance in host macrophages by hepcidin independent mechanism. Unaffected level of Fpn‐FLAG in LD infected J774 macrophage confirms that Fpn down‐regulation is not due its degradation. While increased Fpn mRNA but decreased protein expression in macrophages suggests blocking of Fpn translation by LD infection that is confirmed by 35S‐methionine labelling assay. We further reveal that LD blocks Fpn translation by induced binding of iron regulatory proteins (IRPs) to the iron responsive element present in its 5′UTR. Supershift analysis provides evidence of involvement of IRP2 particularly during in vivo infection. Accordingly, a significant increase in IRP2 protein expression with simultaneous decrease in its stability regulator F‐box and leucine‐rich repeat Protein 5 (FBXL5) is detected in splenocytes of LD‐infected mice. Increased intracellular growth due to compromised expressions of Fpn and FBXL5 by specific siRNAs reveals that LD uses a novel strategy of manipulating IRP2‐FBXL5 axis to inhibit host Fpn expression.  相似文献   

6.
The present study was designed to investigate ex vivo the protective mechanisms of heat-shock response against H2O2-induced oxidative stress in peripheral blood mononuclear cells (PBMCs) of rats. Twenty-four hours later, heat-shock treatment was executed in vivo; rat PBMCs were collected and treated with H2O2. The accumulation of reactive oxygen species and the mitochondrial membrane potential were evaluated by intracellular fluorescent dHE and JC-1 dye staining, respectively, and expression of HSP72 and cytochrome c was detected by Western blot analysis. Cellular apoptosis was assayed by TUNEL staining and double staining of Annexin V and PI. The results showed that H2O2-induced oxidative stress leads to intracellular superoxide accumulation and collapse of the mitochondrial membrane potential in rat PBMCs. Moreover, cellular apoptosis was detected after H2O2 treatment, and the release of mitochondrial cytochrome c from mitochondria to cytosol was significantly enhanced. Heat-shock pretreatment decreases the accumulation of intracellular superoxide in PBMCs during H2O2-induced oxidative stress. Moreover, heat-shock treatment prevents the collapse of the mitochondrial membrane potential and cytochrome c release from mitochondria during H2O2-induced oxidative stress. In conclusion, mitochondria are critical organelles of the protective effects of heat-shock treatment. Cellular apoptosis during H2O2-induced oxidative stress is decreased by heat-shock treatment through a decrease in superoxide induction and preservation of the mitochondrial membrane potential.  相似文献   

7.
Konat GW 《Neurochemical research》2002,27(11):1447-1451
Higher order chromatin degradation (HOCD) is a hallmark of programmed cell death. HOCD is mediated by enzymatic digestion of the DNA backbone at matrix attachment regions, and ultimately results in the excision of chromatin loops and their oligomers from chromosomes. We have recently demonstrated that hydrogen peroxide (H2O2), the major mediator of oxidative stress, rapidly induces HOCD. This demonstration allowed us to characterize several kinetic features of HOCD. Moreover, H2O2-induced HOCD provides a mechanistic link between oxidative stress and the pathology of neurodegeneration. Thus, in acute neurodegenerative conditions, which feature severe oxidative stress, H2O2-induced HOCD efficiently dismantles the genome, and thus, irreversibly commits cells to death. In chronic neurodegenerative conditions, which feature sublethal but perennial oxidative stress, cells undergo only a partial fragmentation of the genome via H2O2-induced HOCD. If unrepaired of improperly repaired, such a partial fragmentation leads to the generation and accumulation of somatic mutations that are likely to play the key role in delayed degeneration and death of neural cells.  相似文献   

8.
As there is strong evidence for inflammation and oxidative stress in depression, the aim of this study was to elucidate the relationship between oxidative imbalance and cellular immune response and to ask whether these processes are linked with iron metabolism in depressed patients. Blood was collected from patients diagnosed with recurrent depressive disorder (n=15) and from healthy controls (n=19). Whole-blood reduced glutathione (GSH), erythrocyte superoxide dismutase (SOD-1), glutathione peroxidase (GPx-1), glutathione reductase, malondialdehyde (MDA), and methemoglobin (MetHb) and plasma H2O2 were assayed spectrophotometrically. The serum heme oxygenase 1 (HO-1), cytokine, neopterin, and iron statuses were measured by ELISA. DNA damage was analyzed by comet assay. Serum concentrations of ferritin and soluble transferrin receptor were assayed by ELISA. MetHb saturation was analyzed spectrophotometrically in red blood cell hemolysate. The erythron variables were measured using a hematological analyzer. We observed a significant decrease in GPx-1 and SOD-1 activities and decreased levels of HO-1 and GSH in depressed patients compared to controls. Conversely, compared with controls, we found increased concentrations of MDA and H2O2 and more DNA damage in depressed patients. Furthermore, the levels of the proinflammatory cytokine interleukin-6 and of neopterin were increased in depressed patients along with decreased hemoglobin and hematocrit. A strong association between antioxidant defense, cytokine levels, and iron homeostasis was also revealed. These findings show that depression is associated with increased oxidative stress, inflammation, and restrictions on the available iron supply for red blood cell production. Furthermore, decreased antioxidant defense correlates with an increased cellular inflammatory response, whereas both concur with erythron and iron status, the latter explained by significant canonical correlations with the set of free radical scavenging enzymes and proinflammatory enzymes. The strong links between immune function, oxidative stress, and iron homeostasis suggest the presence of a self-sustaining multipathway mechanism that may progressively worsen, i.e., throughout accumulation of oxidative damage, producing the functional and structural consequences associated with depression. Hence, identifying viable therapeutic strategies to tackle oxidative stress and accompanying physiological disturbances, including inflammation and anemia, of chronic disease provides more opportunities for the treatment and, ultimately, prevention of depression.  相似文献   

9.
Oxidative stress can induce neuronal apoptosis via the production of superoxide and hydroxyl radicals. This process is as a major pathogenic mechanism in neurodegenerative disorders. In this study, we aimed to clarify whether theaflavins protect PC12 cells from oxidative stress damage induced by H2O2. A cell model of PC12 cells undergoing oxidative stress was created by exposing cells to 200 μM H2O2 in the presence or absence of varying concentrations of theaflavins (5, 10, and 20 μM). Cell viability was monitored using the MTT assay and Hoechst 33258 staining, showing that 10 μM theaflavins enhanced cell survival following 200 μM H2O2 induced toxicity and increased cell viability by approximately 40?%. Additionally, we measured levels of intracellular reactive oxygen species (ROS) and antioxidant enzyme activity. This suggested that the neuroprotective effect of theaflavins against oxidative stress in PC12 cells is derived from suppression of oxidant enzyme activity. Furthermore, Western blot analyses indicated that theaflavins downregulated the ratio of pro-apoptosis/anti-apoptosis proteins Bax/Bcl-2. Theaflavins also downregulated the expression of caspase-3 compared with a H2O2-treated group that had not been treated with theaflavins. Interestingly, this is the first study to report that the four main components of theaflavins found in black tea can protect neural cells (PC12) from apoptosis induced by H2O2. These findings provide the foundations for a new field of using theaflavins or its source, black tea, in the treatment of neurodegenerative diseases caused by oxidative stress.  相似文献   

10.
Essential trace elements are commonly found in altered concentrations in the brains of patients with neurodegenerative diseases. Many studies in trace metal determination and quantification are conducted in tissue, cell culture or whole brain. In the present investigation, we determined by ICP-MS Fe, Cu, Zn, Ca, Se, Co, Cr, Mg, and Mn in organelles (mitochondria, nuclei) and whole motor neuron cell cultured in vitro. We performed experiments using two ways to access oxidative stress: cell treatments with H2O2 or Aβ-42 peptide in its oligomeric form. Both treatments caused accumulation of markers of oxidative stress, such as oxidized proteins and lipids, and alteration in DNA. Regarding trace elements, cells treated with H2O2 showed higher levels of Zn and lower levels of Ca in nuclei when compared to control cells with no oxidative treatments. On the other hand, cells treated with Aβ-42 peptide in its oligomeric form showed higher levels of Mg, Ca, Fe and Zn in nuclei when compared to control cells. These differences showed that metal flux in cell organelles during an intrinsic external oxidative condition (H2O2 treatment) are different from an intrinsic external neurodegenerative treatment.  相似文献   

11.
Glutathione depletion is one of the earliest detectable events in the Parkinsonian substantia nigra (SN), but whether it is causative for ensuing molecular events associated with the disease is unknown. Here we report that reduction in levels of glutathione in immortalized midbrain-derived dopaminergic neurons results in increases in the cellular labile iron pool (LIP). This increase is independent of either iron regulatory protein/iron regulatory element (IRP/IRE) or hypoxia inducible factor (HIF) induction but is both H202 and protein synthesis-dependent. Our findings suggest a novel mechanistic link between dopaminergic glutathione depletion and increased iron levels based on translational activation of TfR1. This may have important implications for neurodegeneration associated with Parkinson's disease in which both glutathione reduction and iron elevation have been implicated.  相似文献   

12.
Oxidative stress is recognized as one of the pathogenic mechanisms involved in neurodegenerative disease. However, recent evidence has suggested that regulation of cellular fate in response to oxidative stress appears to be dependent on the stress levels. In this study, using HT22 cells, we attempted to understand how an alteration in the oxidative stress levels would influence neuronal cell fate. HT22 cell viability was reduced with exposure to high levels of oxidative stress, whereas, low levels of oxidative stress promoted cell survival. Erk1/2 activation induced by a low level of oxidative stress played a role in this cell protective effect. Intriguingly, subtoxic level of H2O2 induced expression of a growth factor, progranulin (PGRN), and exogenous PGRN pretreatment attenuated HT22 cell death induced by high concentrations of H2O2 in Erk1/2-dependent manner. Together, our study indicates that two different cell protection mechanisms are activated by differing levels of oxidative stress in HT22 cells.  相似文献   

13.
Oxidative stress-induced neuronal apoptosis plays an important role in many neurodegenerative disorders. In this study, we have shown that indirubin-3-oxime, a derivative of indirubin originally designed for leukemia therapy, could prevent hydrogen peroxide (H2O2)-induced apoptosis in both SH-SY5Y cells and primary cerebellar granule neurons. H2O2 exposure led to the increased activities of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) in SH-SY5Y cells. Indirubin-3-oxime treatment significantly reversed the altered activity of both the PI3-K/Akt/GSK3β cascade and the ERK pathway induced by H2O2. In addition, both GSK3β and mitogen-activated protein kinase inhibitors significantly prevented H2O2-induced neuronal apoptosis. Moreover, specific inhibitors of the phosphoinositide 3-kinase (PI3-K) abolished the neuroprotective effects of indirubin-3-oxime against H2O2-induced neuronal apoptosis. These results strongly suggest that indirubin-3-oxime prevents H2O2-induced apoptosis via concurrent inhibiting GSK3β and the ERK pathway in SH-SY5Y cells, providing support for the use of indirubin-3-oxime to treat neurodegenerative disorders caused or exacerbated by oxidative stress.  相似文献   

14.
Reactive oxygen species and oxidative stress are associated with neuronal cell death in many neurodegenerative conditions. However, the exact molecular mechanisms triggered by oxidative stress in neurodegeneration are still unclear. This study used the B65 rat neuroblastoma cell line as a model to study the molecular events that occur after H2O2 treatment. Treatment of B65 cells with H2O2 rapidly up-regulated the DNA damage pathway involved in double-strand breakage. Subsequently, proteins involved in p53 regulation, such as sirtuin 1 and STAT1, were modified. In addition, H2O2 treatment altered the pattern of cell cycle protein expression. Specifically, a decrease was found in the expression of cyclin D1, cdk4 and surprisingly the levels of cyclin A and the retinoblastoma protein phosphorylated at ser780 were increased. Furthermore, this study shows that pre-treatment of B65 cells with 50 µM trolox confers almost total protection against apoptotic cell death and restores the cell cycle. Likewise, the increase in retinoblastoma phosphorylation was attenuated by KU-55993, a selective ATM inhibitor, and also by trolox. These observations indicate that DNA damage and oxidative stress are responsible for cell cycle regulation. In summary, this study describes the molecular mechanisms involved in cell cycle alterations induced by oxidative stress in B65 cells. These findings highlight the relevance of ATM in the regulation of cell cycle after oxidative stress.  相似文献   

15.
Oxidative stress-induced neuronal apoptosis is a prominent feature found in neurodegenerative disorders. However, how oxidative stress induces neuronal apoptosis is not well understood. To address this question, undifferentiated and differentiated neuronal cell lines (PC12 and SH-SY5Y) were exposed to hydrogen peroxide (H2O2), a major oxidant generated when oxidative stress occurs. We observed that H2O2 induced generation of reactive oxygen species (ROS), leading to apoptosis of the cells in a concentration- and time-dependent manner. H2O2 rapidly activated the mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38. Inhibition of Erk1/2, JNK or p38 with kinase inhibitors (U0126, SP600125 or PD169316, respectively), downregulation of Erk1/2 or p38 using RNA interference, or expression of dominant negative c-Jun partially prevented H2O2-induced apoptosis. Pretreatment with N-acetyl-l-cysteine (NAC) scavenged H2O2-induced ROS, blocking activation of MAPKs and cell death. Furthermore, we found that H2O2-induced ROS inhibited serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5), which was abrogated by NAC. Overexpression of PP2A or PP5 partially prevented H2O2-activation of Erk/12, JNK and p38, as well as cell death. Similar results were observed in primary murine neurons as well. The results suggest that H2O2-induction of ROS inhibit PP2A and PP5, leading to activation of Erk1/2, JNK and p38 pathways thereby resulting in neuronal apoptosis. Our findings suggest that inhibitors of MAPKs (JNK, Erk1/2 and p38), activators of phosphatases (PP2A and PP5) or antioxidants may have potentials to prevent and treat oxidative stress-induced neurodegenerative diseases.  相似文献   

16.
《Free radical research》2013,47(3):347-356
Abstract

Oxidative stress is induced by excess accumulation of reactive oxygen and nitrogen species (RONS). Astrocytes are metabolically active cells in the brain and understanding astrocytic responses to oxidative stress is essential to understand brain pathologies. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance formation of other RONS. The present study was carried out to examine the role of insulin in H2O2-induced oxidative stress in rat astrocytic cells. To measure changes in the viability of astrocytes at different concentrations of H2O2 for 3 h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)-based assay was used and 500 μM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 3 h of 500 μM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS) and calcium ion (Ca2+) in C6 cells, with insulin able to effectively diminish H2O2-induced oxidative damage to C6 cells. Western blotting studies showed that insulin treatment of astrocytes increased the levels of phosphorylated Akt and magnified the decrease in total Bcl-2 protein. The protective effect of insulin treatment on H2O2-induced oxidative stress in astrocytes by reducing apoptosis may relate to the PI3K/Akt pathway.  相似文献   

17.
Oxidative stress is an established event in the pathology of neurobiological diseases. Previous studies indicated that store-operated Ca2+ entry (SOCE) has been involved in oxidative stress. The present study was carried out to investigate the effects of SOCE inhibition on neuronal oxidative stress injury induced by hydrogen peroxide (H2O2) in HT22 cells, a murine hippocampal neuronal model. H2O2 insult induced significant intracellular Ca2+ overload, mitochondrial dysfunction and cell viability decrease. Inhibition of SOCE by pharmacological inhibitor and STIM1 RNAi significantly alleviated intracellular Ca2+ overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and eventually inhibited H2O2-induced cell apoptosis. These findings suggest that SOCE inhibition exhibited neuroprotection against oxidative stress induced by H2O2 and SOCE might be a useful therapeutic target in neurobiological disorders.  相似文献   

18.
In this study, we examined the modulation of Cu toxicity-induced oxidative stress by excess supply of iron in Zea mays L. plants. Plants receiving excess of Cu (100 μM) showed decreased water potential and simultaneously showed wilting in the leaves. Later, the young leaves exhibited chlorosis and necrotic scorching of lamina. Excess of Cu suppressed growth, decreased concentration of chloroplastic pigments and fresh and dry weight of plants. The activities of peroxidase (EC 1.11.1.7; POD), ascorbate peroxidase (EC 1.11.1.11; APX) and superoxide dismutase (EC 1.15.1.1; SOD) were increased in plants supplied excess of Cu. However, activity of catalase (EC 1.11.1.6; CAT), was depressed in these plants. In gel activities of isoforms of POD, APX and SOD also revealed upregulation of these enzymes. Excess (500 μM)-Fe-supplemented Cu-stressed plants, however, looked better in their phenotypic appearance, had increased concentration of chloroplastic pigments, dry weight, and improved leaf tissue water status in comparison to the plants supplied excess of Cu. Moreover, activities of antioxidant enzymes including CAT were further enhanced and thiobarbituric acid reactive substance (TBARS) and H2O2 concentrations decreased in excess-Fe-supplemented Cu-stressed plants. In situ accumulation of H2O2, contrary to that of O2 ·− radical, increased in both leaf and roots of excess-Cu-stressed plants, but Cu-excess plants supplied with excess-Fe showed reduced accumulation H2O2 and little higher of O2 ·− in comparison to excess-Cu plants. It is, therefore, concluded that excess-Cu (100 μM) induces oxidative stress by increasing production of H2O2 despite of increased antioxidant protection and that the excess-Cu-induced oxidative damage is minimized by excess supply of Fe.  相似文献   

19.
Iron regulatory protein 1 (IRP1) is a bifunctional [4Fe-4S] protein that controls iron homeostasis. Switching off its function from an aconitase to an apo-IRP1 interacting with iron-responsive element-containing mRNAs depends on the reduced availability of iron in labile iron pool (LIP). Although the modulation of IRP1 by nitric oxide has been characterized, its impact on LIP remains unknown. Here, we show that inhibition of IRP1 aconitase activity and induction of its IRE-binding activity during exposure of L5178Y mouse lymphoma cells to NO are associated with an increase in LIP levels. Removal of NO resulted in a reverse regulation of IRP1 activities accompanied by a decrease of LIP. The increased iron burden in LIP caused by NO exacerbated hydrogen peroxide-induced genotoxicity in L5178Y cells. We demonstrate that the increase in LIP levels in response to chronic but not burst exposure of L5178Y cells to NO is associated with alterations in the expression of proteins involved in iron metabolism.  相似文献   

20.
Astroglial cells represent the main line of defence against oxidative damage related to neurodegeneration. Therefore, protection of astroglia from an excess of reactive oxygen species could represent an important target of the treatment of such conditions. The aim of our study was to compare the abilities of glucose and fructose, the two monosaccharides used in diet and infusion, to protect C6 cells from hydrogen peroxide (H2O2)-mediated oxidative stress. It was observed using confocal microscopy with fluorescent labels and the MTT test that fructose prevents changes of oxidative status of the cells exposed to H2O2 and preserves their viability. Even more pronounced protective effects were observed for fructose 1,6-bis(phosphate). We propose that fructose and its intracellular forms prevent H2O2 from participating in the Fenton reaction via iron sequestration. As fructose and fructose 1,6-bis(phosphate) are able to pass the blood–brain barrier, they could provide antioxidative protection of nervous tissue in vivo. So, in contrast to the well-known negative effects of frequent consumption of fructose under physiological conditions, acute infusion or ingestion of fructose or fructose 1,6-bis(phosphate) could be of benefit in the cytoprotective therapy of neurodegenerative disorders related to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号