共查询到20条相似文献,搜索用时 15 毫秒
1.
Daniel Gackowski Rafal Rozalski Krzysztof Roszkowski Arkadiusz Jawien Marek Foksiński Ryszard Olinski 《Free radical research》2013,47(6):825-832
In the present study, we used the method involving HPLC pre-purification followed by gas chromatography with isotope dilution mass spectrometric detection for the determination of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and 8-oxo-7,8-dihydroguanine (8-oxoGua) in human urine. The mean levels of 8-oxoGua and 8-oxodGuo in the urine samples of the subjects on unrestricted diet were respectively 1.87 nmol/kg 24 h (±0.90) and 0.83 nmol/kg 24h (±0.49), and in the case of the groups studied, they did not depend on the applied diet. The sum of the amounts of both compounds in urine can give information about the formation rate of 8-oxoGua in cellular DNA. It is also likely that the levels of modified nucleo-base/side in urine sample are reflective of the involvement of different repair pathways responsible for the removal of 8-oxodGuo from DNA, namely base excision repair (BER) and nucleotide excision repair (NER). 相似文献
2.
J.-L Ravanat B Duretz A Guiller T Douki J Cadet 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1998,715(2):99
A sensitive and specific assay aimed at measuring 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) has been developed by associating a reversed-phase liquid chromatographic separation with an electrospray tandem mass spectrometric detection. The HPLC–MS approach in the single ion monitoring (SIM) mode and the HPLC–MS/MS assay in the multiple reaction monitoring (MRM) mode have been compared, using isotopically labeled [M+4] 8-oxodGuo as the internal standard. The limit of detection of 8-oxodGuo was found to be around 5 pmol and 20 fmol for the HPLC–MS and HPLC–MS/MS methods, respectively. The HPLC–MS/MS assay is sensitive enough to allow the determination of the level of 8-oxodGuo in cellular liver DNA and in urine samples. 相似文献
3.
Laura Kofoed Kjær Vanja Cejvanovic Trine Henriksen Torben Hansen Oluf Pedersen Cramer Kjeldahl Christensen 《Free radical research》2019,53(6):694-703
The relationship between RNA and DNA oxidation and pharmacological treatment has not been systematically investigated in patients with type 2 diabetes (T2D). We aimed to investigate the association between pharmacological treatments and levels of urinary markers of nucleic acid oxidation in T2D patients. Vejle Diabetes Biobank cohort data was nested into nationwide registry data. Multiple logistic regression was used to associate drug usage with risk of high (above median) RNA and DNA oxidation. Data from 2664 T2D patients (64% male, age range: 25–75) were included. Questionnaire-validated lipid lowering drug use was associated with low RNA oxidation (Odds ratio, OR 0.71, 95% CI: [0.59–0.87]). Insulin and non-specific antidiabetic drugs were associated with low DNA oxidation (insulin: OR 0.60, 95% CI [0.49–0.73]). Oral antidiabetics were associated with high DNA oxidation and RNA oxidation (OR 1.30, 95% CI [1.10–1.53] and OR 1.26, 95% CI [1.07–1.29]). Our findings indicate that diabetes-related drugs are associated with RNA and DNA oxidation and further studies are required to determine causality in T2D patients. 相似文献
5.
Oxidative stress: A dead end or a laboratory hypothesis? 总被引:1,自引:0,他引:1
Azzi A 《Biochemical and biophysical research communications》2007,362(2):230-232
6.
Thiopurine antimetabolites, such as azathioprine (Aza) and 6-thioguanine (6-TG), are widely used in the treatment of cancer, inflammatory conditions and organ transplantation patients. Recent work has shown that cells treated with 6-TG and UVA generate ROS, with implied oxidatively generated modification of DNA. In a study of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) in renal transplant patients, we provided the first in vivo evidence linking Aza and oxidatively damaged DNA. Using the hOGG1 comet assay, we herein demonstrate high levels of 8-oxodG and alkali-labile sites (ALS) in cells treated with biologically relevant doses of 6-TG, or Aza, plus UVA. This damage was induced dose-dependently. Surprisingly, given the involvement of 6-TG incorporation into DNA in its therapeutic effect, significant amounts of 8-oxodG and ALS were induced in quiescent cells, although less than in proliferating cells. We speculate that some activity of hOGG1 towards unirradiated, 6-TG treated cells, implies possible recognition of 6-TG or derivatives thereof. This is the first report to conclusively demonstrate oxidatively damaged DNA in cells treated with thiopurines and UVA. These data indicate that Aza-derived oxidative stress will occur in the skin of patients on Aza, following even low level UVA exposure. This is a probable contributor to the increased risk of non-melanoma skin cancer in these patients. However, as oxidative stress is unlikely to be involved in the therapeutic effects of Aza, intercepting ROS production in the skin could be a viable route by which this side effect may be minimised. 相似文献
7.
Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low-density lipoprotein 总被引:9,自引:0,他引:9
Schroeter H Williams RJ Matin R Iversen L Rice-Evans CA 《Free radical biology & medicine》2000,29(12):1222-1233
Oxidative stress is implicated in neuronal loss associated with neurodegeneration such as in Parkinson’s disease, Alzheimer’s disease and age-related cognitive decline. Recent reports indicate that the consumption of flavonoid-rich fruits partly reverses the age-related neuronal and cognitive decline. In this study, cultured striatal neurons were exposed to oxidized lipids in the form of low-density lipoprotein (oxLDL) as a model for the induction of oxidative injury, and the abilities of phenolic antioxidants, flavonoids and hydroxycinnamic acid derivatives, to attenuate this neuronal damage were examined. OxLDL was demonstrated to enter neuronal cells and to be capable of eliciting neurotoxicity in a dose- and time-dependent manner, inducing DNA fragmentation and cell lysis. Flavonoids exert protective effects, which appear to be related to specific structural characteristics, particularly relevant being those defining their reduction potentials and partition coefficients. In summary, these data suggest a possible role for flavonoids in reducing neurodegeneration associated with chronic disorders in which oxidative stress is implicated. 相似文献
8.
Hyperglycemia-induced oxidative stress in diabetic complications 总被引:8,自引:3,他引:8
Reactive oxygen species are increased by hyperglycemia. Hyperglycemia, which occurs during diabetes (both type 1 and type 2) and, to a lesser extent, during insulin resistance, causes oxidative stress. Free fatty acids, which may be elevated during inadequate glycemic control, may also be contributory. In this review, we will discuss the role of oxidative stress in diabetic complications. Oxidative stress may be important in diabetes, not just because of its role in the development of complications, but because persistent hyperglycemia, secondary to insulin resistance, may induce oxidative stress and contribute to beta cell destruction in type 2 diabetes. The focus of this review will be on the role of oxidative stress in the etiology of diabetic complications. 相似文献
9.
The eye is a unique organ because of its constant exposure to radiation, atmospheric oxygen, environmental chemicals and physical abrasion. That oxidative stress mechanisms in ocular tissues have been hypothesized to play a role in diseases such as glaucoma, cataract, uveitis, retrolental fibroplasias, age-related macular degeneration and various forms of retinopathy provides an opportunity for new approaches to their prevention and treatment, In the anterior uvea, both H2O2 and synthetic peroxides exert pharmacological/toxicological actions tissues of the anterior uvea especially on the sympathetic nerves and smooth muscles of the iris–ciliary bodies of several mammalian species. Effects produced by peroxides require the presence of trace amounts of extracellular calcium and the functional integrity of mitochondrial calcium stores. Arachidonic acid metabolites appear to be involved in both the excitatory action of peroxides on sympathetic neurotransmission and their inhibitory effect on contractility of the iris smooth muscle to muscarinic receptor activation. In addition to the peroxides, isoprostanes (products of free radical catalyzed peroxidation of arachidonic acid independent of the cyclo-oxygenase enzyme) can also alter sympathetic neurotransmission in anterior uveal tissues. In the retina, both H2O2 and synthetic peroxides produced an inhibitory action on potassium depolarization induced release of [3H] d-aspartate, in vitro and on the endogenous glutamate and glycine concentrations in vivo. Effects caused by peroxides in the retina are mediated, at least in part, by second messengers such as nitric oxide, prostaglandins and isoprostanes. The ability of H2O2 to alter the integrity of neurotransmitter pools from sympathetic nerves in the anterior uvea and glutaminergic nerves in the retina could underlie its role in the etiology of glaucoma. 相似文献
10.
8-Oxo-7,8-dihydroguanosine triphosphate (8-oxoGTP) has been regarded simply as a oxidative mutagenic byproduct. The results obtained in this study imply that it may act as a down-regulator of respiratory burst of neutrophils. Human neutrophils treated with PMA produced superoxides and at the same time, the cytosol of these cells was intensely immunostained by 8-oxo-7,8-dihydroguanosine(8-oxoG) antibody, indicating that 8-oxoG-containing chemical species including 8-oxoGTP are produced. Human neutrophil lysates treated with PMA also produced superoxides, which was stimulated by GTPγS but inhibited by 8-oxoGTPγS. Moreover, 8-oxoGTPγS suppressed the stimulatory action of GTPγS. Likewise, GTPγS stimulated Rac activity in neutrophil lysates but 8-oxoGTPγS and GDP inhibited it. The inhibitory effect of GDP was one tenth that of 8-oxoGTPγS. Here again, 8-oxoGTPγS also suppressed the stimulatory action of GTPγS on Rac activity. These results imply the possibility that 8-oxoGTP is formed during respiratory burst of neutrophils and limits neutrophil production of superoxides by antagonizing GTP toward Rac. 相似文献
11.
Hiroyuki Kamiya Akihiro Suzuki Yuki Yamaguchi Hiroshi Handa Hideyoshi Harashima 《Free radical biology & medicine》2009,46(12):1703-1707
Oxidized RNA precursors formed in the nucleotide pool may be incorporated into RNA. In this study, the incorporation of 8-hydroxyguanosine 5′-triphosphate (8-OH-GTP; 8-oxo-7,8-dihydroguanosine 5′-triphosphate) into RNA by Escherichia coli RNA polymerase was examined in vitro, using a primer RNA and a template DNA with defined sequences. 8-OH-GTP was incorporated opposite C and A in the template DNA. Surprisingly, 8-OH-GTP was quite efficiently incorporated by the bacterial RNA polymerase, in contrast to the incorporation of the 2′-deoxyribo counterpart by DNA polymerases, as indicated by the kinetic parameters. The primer was further extended by the addition of a ribonucleotide complementary to the nucleobase adjacent to C or A (the nucleobase opposite which 8-OH-GTP was inserted). Thus, the incorporation of 8-OH-GTP did not completely inhibit further RNA chain elongation. 8-OH-GTP was also incorporated opposite C and A by human RNA polymerase II. These results suggest that 8-OH-GTP in the nucleotide pool can cause the formation of oxidized RNA and disturb the transmittance of genetic information. 相似文献
12.
Oxidative stress in the male germ line is known to be a key factor in both the etiology of male infertility and the high levels of DNA damage encountered in human spermatozoa. Because the latter has been associated with a variety of adverse clinical outcomes, including miscarriage and developmental abnormalities in the offspring, the mechanisms that spermatozoa use to defend themselves against oxidative stress are of great interest. In this context, the male germ line expresses three unique forms of thioredoxin, known as thioredoxin domain-containing proteins (Txndc2, Txndc3, and Txndc8). Two of these proteins, Txndc2 and Txndc3, retain association with the spermatozoa after spermiation and potentially play an important role in regulating the redox status of the mature gamete. To address this area, we have functionally deleted the sperm-specific thioredoxins from the male germ line of mice by either exon deletion (Txndc2) or mutation of the bioactive cysteines (Txndc3). The combined inactivation of these Txndc isoforms did not have an overall impact on spermatogenesis, epididymal sperm maturation, or fertility. However, Txndc deficiency in spermatozoa did lead to age-dependent changes in these cells as reflected by accelerated motility loss, high rates of DNA damage, increases in reactive oxygen species generation, enhanced formation of lipid aldehyde–protein adducts, and impaired protamination of the sperm chromatin. These results suggest that although there is considerable redundancy in the systems employed by spermatozoa to defend themselves against oxidative stress, the sperm-specific thioredoxins, Txndc2 and Txndc3, are critically important in protecting these cells against the increases in oxidative stress associated with paternal age. 相似文献
13.
14.
Summary In vitro photosensitization by visible light in the presence of methylene blue (MB-light) produces lesions in M13mpl8 lacZ phage DNA, the lethal and mutagenic potential of which was analyzed after transfection into various bacterial hosts. Mutagenesis was determined with a forward mutation assay using the lacZ gene of M13mp18 as a target. When, MB-light-treated double-stranded (ds) M13mp18 DNA was used to transfect wild-type cells which were not induced for SOS functions, a fivefold increase in mutation frequency was observed at 10% survival compared to that observed with untreated DNA. Mutation frequency obtained with MB-light-treated ds M13mp18 DNA was greater when transfected into the uvrA fpg-1 double mutant than that seen in uvrA, fpg-1, or umuC single mutants or in the wild-type. Sequence analysis shows that in the wild-type strain, MB-light treatment of ds M13mp18 DNA results mostly in single base substitutions. The most frequent base change is the GCTA transversion. MB-light treatment of single-stranded (ss) M13mp18 DNA also results in an increased mutation frequency after transfection into the wild-type strain, yielding mostly GT transversions. Our results show that MB-light-induced mutagenesis is at least partially independent of the induction of SOS functions in Escherichia coli. The mutation spectra suggest that 8-oxo-7,8-dihydroguanine is the major promutagenic lesion in DNA. 相似文献
15.
16.
Growing evidence suggests a strong association between cardiovascular risk factors and incidence of Alzheimer disease (AD). Asymmetric dimethylarginine (ADMA), the endogenous nitric oxide synthase inhibitor, has been identified as an independent cardiovascular risk factor and is also increased in plasma of patients with AD. However, whether ADMA is involved in the pathogenesis of AD is unknown. In this study, we found that ADMA content was increased in a transgenic Caenorhabditis elegans β-amyloid (Aβ) overexpression model, strain CL2006, and in human SH-SY5Y cells overexpressing the Swedish mutant form of human Aβ precursor protein (APPsw). Moreover, ADMA treatment exacerbated Aβ-induced paralysis and oxidative stress in CL2006 worms and further elevated oxidative stress and Aβ secretion in APPsw cells. Knockdown of type 1 protein arginine N-methyltransferase to reduce ADMA production failed to show a protective effect against Aβ toxicity, but resulted in more paralysis in CL2006 worms as well as increased oxidative stress and Aβ secretion in APPsw cells. However, overexpression of dimethylarginine dimethylaminohydrolase 1 (DDAH1) to promote ADMA degradation significantly attenuated oxidative stress and Aβ secretion in APPsw cells. Collectively, our data support the hypothesis that elevated ADMA contributes to the pathogenesis of AD. Our findings suggest that strategies to increase DDAH1 activity in neuronal cells may be a novel approach to attenuating AD development. 相似文献
17.
Maria Shirley Herbas Oriel M.M. Thekisoe Noburo Inoue Xuenan Xuan Hiroyuki Arai Hiroshi Suzuki 《Free radical biology & medicine》2009,47(10):1408-1413
At present 15 to 20 million people are estimated to be infected with pathogenic trypanosome parasites worldwide, mainly in developing countries. There are a number of factors that affect the severity of trypanosomiasis, including the nutritional status of the host. However, the relationship between micronutrient levels and trypanosomiasis outcome has yet to be reported in detail. Here, we demonstrate that the inhibition of α-tocopherol transfer protein, a determinant of the vitamin E concentration in host circulation, confers resistance to Trypanosoma congolense infection, evidently owing to oxidative damage to parasite DNA. These results suggest that transient inhibition of α-tocopherol transfer gene activity could possibly be exploited as a strategy for both the prevention and the treatment of trypanosomiasis. 相似文献
18.
19.
Moriarty SE Shah JH Lynn M Jiang S Openo K Jones DP Sternberg P 《Free radical biology & medicine》2003,35(12):1582-1588
Cigarette smoking contributes to the development or progression of numerous chronic and age-related disease processes, but detailed mechanisms remain elusive. In the present study, we examined the redox states of the GSH/GSSG and Cys/CySS couples in plasma of smokers and nonsmokers between the ages of 44 and 85 years (n = 78 nonsmokers, n = 43 smokers). The Cys/CySS redox in smokers (−64 ± 16 mV) was more oxidized than nonsmokers (− 76 ± 11 mV; p < .001), with decreased Cys in smokers (9 ± 5 μM) compared to nonsmokers (13 ± 6 μM; p < .001). The GSH/GSSG redox was also more oxidized in smokers (−128 ± 18 mV) than in nonsmokers (−137 ± 17 mV; p = .01) and GSH was lower in smokers (1.8 ± 1.3 μM) than in nonsmokers (2.4 ± 1.0; p < .005). Although the oxidation of GSH/GSSG can be explained by the role of GSH in detoxification of reactive species in smoke, the more extensive oxidation of the Cys pool shows that smoking has additional effects on sulfur amino acid metabolism. Cys availability and Cys/CySS redox are known to affect cell proliferation, immune function, and expression of death receptor systems for apoptosis, suggesting that oxidation of Cys/CySS redox or other perturbations of cysteine metabolism may have a key role in chronic diseases associated with cigarette smoking. 相似文献
20.
We examined HeLa cell viability and RNA oxidative damage in response to hydrogen peroxide (H2O2) treatment. The level of damaged RNA, measured by the content of 8-hydroxyguanosine (7,8-dihydro-8-oxoguanosine, 8-oxoG), increases depending on H2O2 dosage and is inversely correlated with cell viability. The elevated level of 8-oxoG in RNA decreases after removal of oxidative challenge, suggesting the existence of surveillance mechanism(s) for cleaning up oxidized RNA. Human polynucleotide phosphorylase (hPNPase), an exoribonuclease primarily located in mitochondria, has been previously shown to bind 8-oxoG-RNA with high affinity. The role of hPNPase in HeLa cell under oxidative stress conditions is examined here. Overexpression of hPNPase reduces RNA oxidation and increases cell viability against H2O2 insult. Conversely, hPNPase knockdown decreases viability and increases 8-oxoG level in HeLa cell exposed to H2O2. Our results suggest that hPNPase plays an important role in protecting cells and limiting damaged RNA under oxidative stress. 相似文献