首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Alterations in cellular energy metabolism play critical roles in colorectal cancer (CRC). These alterations, which correlate to KRAS mutations, have been identified as energy metabolism signatures. This review summarizes the relationship between colorectal tumors associated with mutated KRAS and energy metabolism, especially for the deregulated energy metabolism that affects tumor cell proliferation, invasion, and migration. Furthermore, this review will concentrate on the role of metabolic genes, factors and signaling pathways, which are coupled with the primary energy source connected with the KRAS mutation that induces metabolic alterations. Strategies for targeting energy metabolism in mutated KRAS CRC are also introduced. In conclusion, deregulated energy metabolism has a close relationship with KRAS mutations in colorectal tumors. Therefore, selective inhibitors, agents against metabolic targets or KRAS signaling, may be clinically useful for colorectal tumor treatment through a patient-personalized approach.  相似文献   

4.
Colorectal cancer (CRC) is a heterogeneous group of diseases that are the result of abnormal glucose metabolism alterations with high lactate production by pyruvate to lactate conversion, which remodels acidosis and offers an evolutional advantage for tumor cells, even enhancing their aggressive phenotype. This review summarizes recent findings that involve multiple genes, molecules, and downstream signaling in the dysregulated glycolytic pathway, which can allow a tumor to initiate acid byproducts and to progress, thereby resulting in acidosis commonly found in the tumor microenvironment of CRC. Moreover, the relationship between CRC cells and the tumor acidic microenvironment, especially for regulating lactate production and lactate dehydrogenase A levels, is also discussed, as well as comprehensively defining different aspects of glycolytic pathways that affect cancer cell proliferation, invasion, and migration. Furthermore, this review concentrates on glucose metabolism–mediated transduction factors in CRC, which include acid-sensing ion channels, triosephosphate isomerase and key glycolysis-related enzymes that regulate glycolytic metabolites, coupled with the effect on tumor cell glycolysis as well as signaling pathways. In conclusion, glucose metabolism mediated by glycolytic pathways that are integral to tumor acidosis in CRC is demonstrated. Therefore, selective metabolic inhibitors or agents against these targets in glucose metabolism through glycolytic pathways may be clinically useful to regulate the tumor’s acidic microenvironment for CRC treatment and to identify specific targets that regulate tumor acidosis through a cancer patient–personalized approach. Furthermore, strategies for modifying the metabolic processes that effectively inhibit cancer cell growth and tumor progression and activate potent anticancer effects may provide more effective antitumor prospects for CRC therapy.  相似文献   

5.
Alterations in cellular energy metabolism play a critical role in colorectal cancer (CRC), which has been identified as the definition of consensus molecular subtypes (CMSs), and CMS3 tumors exhibit energy metabolism signatures along with Kirsten rat sarcoma viral oncogene homolog (KRAS)-activating mutations. This review summarizes the relationship between CMS3 tumors associated with mutated KRAS and energy metabolism in CRC, especially for the dysregulated energy metabolism that affects tumor cell proliferation, invasion, and migration. Furthermore, this review concentrates on the role of metabolic genes and factors and signaling pathways, which coupled with a primary energy source connected with the CMS3 associated with mutated KRAS, induce metabolic alterations. The strategies to target energy metabolism for the metabolic alterations in mutated KRAS CRC are also introduced. In conclusion, dysregulated energy metabolism has a close relationship with mutated KRAS in CMS3 tumors. Therefore, selective inhibitors or agents against metabolic targets or KRAS signaling may be clinically useful for CMS3 tumor treatment through a personalized approach for patients with cancer.  相似文献   

6.
Metabolic alterations have been observed in many cancer types. The deregulated metabolism has thus become an emerging hallmark of the disease, where the metabolism is frequently rewired to aerobic glycolysis. This has led to the concept of “metabolic reprogramming”, which has therefore been extensively studied. Over the years, it has been characterized the enhancement of aerobic glycolysis, where key mutations in some of the enzymes of the TCA cycle, and the increased glucose uptake, are used by cancer cells to achieve a “metabolic phenotype” useful to gain a proliferation advantage. Many studies have highlighted in detail the signaling pathways and the molecular mechanisms responsible for the glycolytic switch. However, glycolysis is not the only metabolic process that cancer cells rely on. Oxidative Phosphorylation (OXPHOS), gluconeogenesis or the beta-oxidation of fatty acids (FAO) may be involved in the development and progression of several tumors. In some cases, these metabolisms are even more crucial than aerobic glycolysis for the tumor survival. This review will focus on the contribution of these alterations of metabolism to the development and survival of cancers. We will also analyze the molecular mechanisms by which the balance between these metabolic processes may be regulated, as well as some of the therapeutical approaches that can derive from their study.  相似文献   

7.
Nitric oxide (NO(.-)) is produced by many diverse cell types as a cellular or intracellular signaling molecule, by the activation of nitric oxide synthases (NOSs). All three known NOS isoforms are expressed within the respiratory tract and mediate various airway functional properties such as airway smooth muscle tone, ciliary function, epithelial electrolyte transport, and innate host defense. The respiratory epithelium is a major source of NO(.-), in which it regulates normal epithelial cell function and signaling as well as signaling pathways involved in airway inflammation. In addition to its normal physiological properties, increased airway NO(.-) production in inflammatory respiratory tract diseases such as asthma may activate additional signaling mechanisms to regulate inflammatory-immune pathways, and epithelial barrier (dys)function or repair. The biological actions of NO(.-) are controlled at various levels, including mechanisms that regulate NOS localization and activation, and variable oxidative metabolism of NO(.-), resulting in generation of bioactive reactive nitrogen species (RNS). Moreover, in addition to altered production of NO(.-) or RNS, the presence of various target enzymes and/or metabolic regulators of NO(.-)/RNS can be dramatically altered during airway inflammatory conditions, and contribute to alterations in NO(.-)-mediated signaling pathways in disease. This review summarizes current knowledge regarding NO(.-)-mediated epithelial signaling, as well as disease-related changes in airway NOS biology and target enzymes that affect NO(.-)/RNS signaling mechanisms. A detailed understanding of these various changes and their impact on NO(.-) signaling pathways are needed to fully appreciate the contributions of NO(.-)/RNS to airway inflammation and to develop suitable therapeutic approaches based on regulating NO(.-) function.  相似文献   

8.
Arginine is a semi-essential amino acid that plays an important role in the regulation of metabolic processes associated with several pathological/physiological conditions. In the vasculature, it mainly exerts its biological functions as a substrate of two alternative pathways: the conversion to nitric oxide (NO) by nitric oxide synthase (NOS) and the breakdown to urea and ornithine by arginase. To determine arginine metabolism, in the current study we propose an original radiochemical technique that allows the simultaneous monitoring of NOS and arginase activation within intact cells. Taking advantage of this method, we show here the consequences of different experimental conditions known to modulate endothelial homeostasis on arginine metabolism.  相似文献   

9.
10.
Mitochondria are semi-autonomous organelles that play essential roles in cellular metabolism and programmed cell death pathways. Genomic, functional and structural mitochondrial alterations have been associated with cancer. Some of those alterations may provide a selective advantage to cells, allowing them to survive and grow under stresses created by oncogenesis. Due to the specific alterations that occur in cancer cell mitochondria, these organelles may provide promising targets for cancer therapy. The development of drugs that specifically target metabolic and mitochondrial alterations in tumor cells has become a matter of interest in recent years, with several molecules undergoing clinical trials. This review focuses on the most relevant mitochondrial alterations found in tumor cells, their contribution to cancer progression and survival, and potential usefulness for stratification and therapy.  相似文献   

11.
A wide range of mammalian signaling and stress pathways are mediated by nitric oxide (NO), which is synthesized in vivo by the nitric oxide synthase (NOS) family of enzymes. Experimental manipulations of NO are frequently achieved by either inhibition or activation of endogenous NOS or via providing exogenous NO sources. On the contrary, many microbes consume NO via flavohemoglobin (FlavoHb), a highly efficient NO-dioxygenase that protects from nitrosative stress. Here we report a novel resource for studying NO in mammalian cells by heterologously expressing Escherichia coli FlavoHb within a lentiviral delivery system. This technique boosts endogenous cellular consumption of NO, thus providing a simple and efficacious approach to studying mammalian NO biology that can be employed as both a primary experimental and confirmatory tool.  相似文献   

12.
The role of nitric oxide in cancer   总被引:4,自引:0,他引:4  
Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including va-sodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases (NOS) comprises inducible NOS (iNOS), endothelial NOS (eNOS), and neuronal NOS (nNOS). Interestingly, various studies have shown that all three isoforms can be involved in promoting or inhibiting the etiology of cancer. NOS activity has been detected in tumour cells of various histogenetic origins and has been associated with tumour grade, proliferation rate and expression of important signaling components associated with cancer development such as the oestrogen receptor. It appears that high levels of NOS expression (for example, generated by activated macrophages) may be cytostatic or cytotoxic for tumor cells, whereas low level activity can have the opposite effect and promote tumour growth. Paradoxically therefore, NO (and related reactive nitrogen species) may have both genotoxic and angiogenic pro  相似文献   

13.
14.
The metabolic properties of cancer cells diverge significantly from those of normal cells. Energy production in cancer cells is abnormally dependent on aerobic glycolysis. In addition to the dependency on glycolysis, cancer cells have other atypical metabolic characteristics such as increased fatty acid synthesis and increased rates of glutamine metabolism. Emerging evidence shows that many features characteristic to cancer cells, such as dysregulated Warburg-like glucose metabolism, fatty acid synthesis and glutaminolysis are linked to therapeutic resistance in cancer treatment. Therefore, targeting cellular metabolism may improve the response to cancer therapeutics and the combination of chemotherapeutic drugs with cellular metabolism inhibitors may represent a promising strategy to overcome drug resistance in cancer therapy. Recently, several review articles have summarized the anticancer targets in the metabolic pathways and metabolic inhibitor-induced cell death pathways, however, the dysregulated metabolism in therapeutic resistance, which is a highly clinical relevant area in cancer metabolism research, has not been specifically addressed. From this unique angle, this review article will discuss the relationship between dysregulated cellular metabolism and cancer drug resistance and how targeting of metabolic enzymes, such as glucose transporters, hexokinase, pyruvate kinase M2, lactate dehydrogenase A, pyruvate dehydrogenase kinase, fatty acid synthase and glutaminase can enhance the efficacy of common therapeutic agents or overcome resistance to chemotherapy or radiotherapy.  相似文献   

15.
The role of nitric oxide in cancer   总被引:10,自引:0,他引:10  
Xu W  Liu LZ  Loizidou M  Ahmed M  Charles IG 《Cell research》2002,12(5-6):311-320
Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including vasodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases (NOS) comprises inducible NOS (iNOS), endothelia (eNOS), and neuronal NOS (nNOS). Interestingly, various studies have shown that all three isoforms can be involved in promoting or inhibiting the etiology of cancer. NOS activity has been detected in tumour cells of various histogenetic origins and has been associated with tumour grade, proliferation rate and expression of important signaling components associated with cancer development such as the oestrogen receptor. It appears that high levels of NOS expression (for example, generated by activated macrophages) may be cytostatic or cytotoxic for tumor cells, whereas low level activity can have the opposite effect and promote tumour growth. Paradoxically therefore, NO (and related reactive nitrogen species) may have both genotoxic and angiogenic properties. Increased NO-generation in a cell may select mutant p53 cells and contribute to tumour angiogenesis by upregulating VEGF. In addition, NO may modulate tumour DNA repair mechanisms by upregulating p53, poly(ADP-ribose) polymerase (PARP) and the DNA-dependent protein kinase (DNA-PK). An understanding at the molecular level of the role of NO in cancer will have profound therapeutic implications for the diagnosis and treatment of disease.  相似文献   

16.
Nitric oxide and wound repair: role of cytokines?   总被引:5,自引:0,他引:5  
Wound healing involves platelets, inflammatory cells, fibroblasts, and epithelial cells. All of these cell types are capable of producing nitric oxide (NO), either constitutively or in response to inflammatory cytokines, through the activity of nitric oxide synthases (NOSs): eNOS (NOS3; endothelial NOS) and iNOS (NOS2; inducible NOS), respectively. Indeed, pharmacological inhibition or gene deletion of these enzymes impairs wound healing. The wound healing mechanisms that are triggered by NO appear to be diverse, involving inflammation, angiogenesis, and cell proliferation. All of these processes are controlled by defined cytokine cascades; in many cases, NO appears to modulate these cytokines. In this review, we summarize the history and present state of research on the role of NO in wound healing within the framework of modulation of cytokines.  相似文献   

17.
Cancer cells are the product of genetic disorders that alter crucial intracellular signaling pathways associated with the regulation of cell survival, proliferation, differentiation and death mechanisms. The role of oncogene activation and tumor suppressor inhibition in the onset of cancer is well established. Traditional antitumor therapies target specific molecules, the action/expression of which is altered in cancer cells. However, since the physiology of normal cells involves the same signaling pathways that are disturbed in cancer cells, targeted therapies have to deal with side effects and multidrug resistance, the main causes of therapy failure. Since the pioneering work of Otto Warburg, over 80 years ago, the subversion of normal metabolism displayed by cancer cells has been highlighted by many studies. Recently, the study of tumor metabolism has received much attention because metabolic transformation is a crucial cancer hallmark and a direct consequence of disturbances in the activities of oncogenes and tumor suppressors. In this review we discuss tumor metabolism from the molecular perspective of oncogenes, tumor suppressors and protein signaling pathways relevant to metabolic transformation and tumorigenesis. We also identify the principal unanswered questions surrounding this issue and the attempts to relate these to their potential for future cancer treatment. As will be made clear, tumor metabolism is still only partly understood and the metabolic aspects of transformation constitute a major challenge for science. Nevertheless, cancer metabolism can be exploited to devise novel avenues for the rational treatment of this disease.  相似文献   

18.
19.
Aging is the strongest risk factor for cancer development, suggesting that molecular crosstalks between aging and tumorigenesis exist in many cellular pathways. Recently, Sirtuins (Sirt1-7), the mammalian homologues of aging-related sir2α in yeast, have been shown to modulate several major cellular pathways, such as DNA repair, inflammation, metabolism, cell death, and proliferation in response to diverse stresses, and may serve as a possible molecular link between aging and tumorignenesis. In addition, growing evidence suggests that sirtuins are directly implicated in the development of cancer, and they can act as either a tumor suppressor or promoter, depending on the cellular context and tumor types. While the functions of Sirt1 in tumorigenesis have been reported and reviewed in many studies, the connection between sirtuins 2-7 and the development of cancer is less established. Thus, this review will present the recent updates on the emerging roles of Sirt2-7 members in carcinogenesis. [BMB Reports 2013; 46(9): 429-438]  相似文献   

20.
Synthetic Lethality (SL) is currently defined as a type of genetic interaction in which the loss of function of either of two genes individually has limited effect in cell viability but inactivation of both genes simultaneously leads to cell death. Given the profound genomic aberrations acquired by tumor cells, which can be systematically identified with -omics data, SL is a promising concept in cancer research. In particular, SL has received much attention in the area of cancer metabolism, due to the fact that relevant functional alterations concentrate on key metabolic pathways that promote cellular proliferation. With the extensive prior knowledge about human metabolic networks, a number of computational methods have been developed to predict SL in cancer metabolism, including the genetic Minimal Cut Sets (gMCSs) approach. A major challenge in the application of SL approaches to cancer metabolism is to systematically integrate tumor microenvironment, given that genetic interactions and nutritional availability are interconnected to support proliferation. Here, we propose a more general definition of SL for cancer metabolism that combines genetic and environmental interactions, namely loss of gene functions and absence of nutrients in the environment. We extend our gMCSs approach to determine this new family of metabolic synthetic lethal interactions. A computational and experimental proof-of-concept is presented for predicting the lethality of dihydrofolate reductase (DHFR) inhibition in different environments. Finally, our approach is applied to identify extracellular nutrient dependences of tumor cells, elucidating cholesterol and myo-inositol depletion as potential vulnerabilities in different malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号