首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cellular stress induced by nutrient deprivation, hypoxia, and exposure to many chemotherapeutic agents activates an evolutionarily conserved cell survival pathway termed autophagy. This pathway enables cancer cells to undergo self-digestion to generate ATP and other essential biosynthetic molecules to temporarily avoid cell death. Therefore, disruption of autophagy may sensitize cancer cells to cell death and augment chemotherapy-induced apoptosis. Chloroquine and its analog hydroxychloroquine are the only clinically relevant autophagy inhibitors. Because both of these agents induce ocular toxicity, novel inhibitors of autophagy with a better therapeutic index are needed. Here we demonstrate that the small molecule lucanthone inhibits autophagy, induces lysosomal membrane permeabilization, and possesses significantly more potent activity in breast cancer models compared with chloroquine. Exposure to lucanthone resulted in processing and recruitment of microtubule-associated protein 1 light chain 3 (LC3) to autophagosomes, but impaired autophagic degradation as revealed by transmission electron microscopy and the accumulation of p62/SQSTM1. Microarray analysis, qRT-PCR, and immunoblotting determined that lucanthone stimulated a large induction in cathepsin D, which correlated with cell death. Accordingly, knockdown of cathepsin D reduced lucanthone-mediated apoptosis. Subsequent studies using p53(+/+) and p53(-/-) HCT116 cells established that lucanthone induced cathepsin D expression and reduced cancer cell viability independently of p53 status. In addition, lucanthone enhanced the anticancer activity of the histone deacetylase inhibitor vorinostat. Collectively, our results demonstrate that lucanthone is a novel autophagic inhibitor that induces apoptosis via cathepsin D accumulation and enhances vorinostat-mediated cell death in breast cancer models.  相似文献   

2.
氧化还原与细胞凋亡的关联   总被引:3,自引:0,他引:3  
石荣  贺福初 《生命科学》2004,16(2):81-83,95
细胞内氧化还原状态与细胞凋亡相互关联的机理仍然存在很大争议。细胞内氧化还原状态的改变促进了氧自由基(ROS)的产生和凋亡诱导因子的激活,致使细胞凋亡的同时又加剧了细胞内氧化还原状态的改变。通过激活细胞凋亡信号激酶(ASK-1)、氧化还原转录因子NF-κB、AP-1及Caspase激活,揭示了细胞内氧化还原状态伴随细胞凋亡的不同阶段。  相似文献   

3.
Autophagy is an evolutionarily conserved pathway for degradation of cytoplasmic proteins and organelles via lysosome. Proteins coded by the autophagy-related genes (Atgs) are the core molecular machinery in control of autophagy. Among the various biological functions of autophagy identified so far, the link between autophagy and cancer is probably among the most extensively studied and is often viewed as controversial. Autophagy might exert a dual role in cancer development: autophagy can serve as an anti-tumor mechanism, as defective autophagy (e.g., heterozygous knockdown Beclin 1 and Atg7 in mice) promotes the malignant transformation and spontaneous tumors. On the other hand, autophagy functions as a protective or survival mechanism in cancer cells against cellular stress (e.g., nutrient deprivation, hypoxia and DNA damage) and hence promotes tumorigenesis and causes resistance to therapeutic agents. Liver cancer is one of the common cancers with well-established etiological factors including hepatitis virus infection and environmental carcinogens such as aflatoxin and alcohol exposure. In recent years, the involvement of autophagy in liver cancer has been increasingly studied. Here, we aim to provide a systematic review on the close cross-talks between autophagy and liver cancer, and summarize the current status in development of novel liver cancer therapeutic approaches by targeting autophagy. It is believed that understanding the molecular mechanisms underlying the autophagy modulation and liver cancer development may provoke the translational studies that ultimately lead to new therapeutic strategies for liver cancer.  相似文献   

4.
Redox regulation plays a key role in several physiopathological contexts and free radicals, from nitric oxide and superoxide anion up to other forms of reactive oxygen species (ROS), have been demonstrated to be involved in different biological and regulatory processes. The data reported in the current literature describe a link between ROS, inflammation and programmed cell death that is attracting interest as new pathways to be explored and targeted for therapeutic purposes. In this light, there is also growing attention to the involvement of this link in the activity of the TNF-related apoptosis inducing ligand (TRAIL). TRAIL is a member of the TNF ligands super family able to mediate multiple intracellular signals, with the potential to lead to a range of biological effects in different cell types. In particular, the hallmark of TRAIL is the ability to induce selective apoptosis in transformed cells leaving normal cells almost unaffected and this feature has already opened the door to several clinical studies for cancer treatment. Moreover, TRAIL plays a role in several physiological and pathological processes of both innate and adaptive immune systems and of the cardiovascular context, with a strong clinical potential. Nonetheless, several issues still need to be clarified about the signaling mediated by TRAIL to gain deeper insight into its therapeutic potential. In this light, the aim of this review is to summarize the main preclinical evidences about the interplay between TRAIL and redox signaling, with particular emphasis to the implications in vascular physiopathology and cancer.  相似文献   

5.
The present study was performed to examine the induction of apoptotic cell death and autophagy by blue LED irradiation, and the contribution of autophagy to apoptosis in B cell lymphoma A20 and RAMOS cells exposed to blue LED. Irradiation with blue LED reduced cell viability and induced apoptotic cell death, as indicated by exposure of phosphatidylserine on the plasma outside membrane and fragmentation of DNA. Furthermore, the mitochondrial membrane potential increased, and apoptotic proteins (PARP, caspase 3, Bax, and bcl-2) were observed. In addition, the level of intracellular superoxide anion (O2) gradually increased. Interestingly the formation of autophagosomes and level of LC3-II were increased in blue LED-irradiated A20 and RAMOS cells, but inhibited after pretreatment with 3-methyladenine (3-MA), widely used as an autophagy inhibitor. Inhibition of the autophagic process by pretreatment with 3-MA blocked blue LED irradiation-induced caspase-3 activation. Moreover, a significant reduction of both the early and late phases of apoptosis after transfection with ATG5 and beclin 1 siRNAs was shown by the annexin V/PI staining, indicating a crucial role of autophagy in blue LED-induced apoptosis in cells. Additionally, the survival rate of mice irradiated with blue LED after injection with A20 cells increased compared to the control group. Our data demonstrate that blue LED irradiation induces apoptosis via the mitochondrial-mediated pathway, in conjunction with autophagy. Further studies are needed to elucidate the precise mechanism of blue LED-induced immune cell death.  相似文献   

6.
Recently, the interest in natural products for the treatment of cancer is increasing because they are the pre-screened candidates. In the present study, we demonstrate the therapeutic effect of celastrol, a triterpene extracted from the root bark of Chinese medicine on gastric cancer. The proliferation of AGS and YCC-2 cells were most sensitively decreased in six kinds of gastric cancer cell lines after the treatment with celastrol. Celastrol inhibited the cell migration and increased G1 arrest in cell-cycle populations in both cell lines. The treatment with celastrol significantly induced autophagy and apoptosis and increased the expression of autophagy and apoptosis-related proteins. We also found an increase in phosphorylated AMPK following a decrease in all phosphorylated forms of AKT, mTOR and S6K after the treatment with celastrol. Moreover, gastric tumor burdens were reduced in a dose-dependent manner by celastrol administration in a xenografted mice model. Taken together, celastrol distinctly inhibits the gastric cancer cell proliferation and induces autophagy and apoptosis. [BMB Reports 2014; 47(12): 697-702]  相似文献   

7.
Calcium signaling and apoptosis   总被引:18,自引:0,他引:18  
Ca(2+) is one of the key regulators of cell survival, but Ca(2+) can also induce apoptosis in response to a variety of pathological conditions. The pro-apoptotic effects of Ca(2+) are mediated by a diverse range of Ca(2+)-sensitive factors that are compartmentalized in various intracellular organelles including the ER, cytoplasm, and mitochondria. The Ca(2+) dynamics of these organelles appear to be modulated by the apoptosis-regulating Bcl-2 family proteins. In this paper, the recent progress of research on the mechanisms mediating the apoptosis-regulating effects of Ca(2+) and the interactions of Bcl-2 family proteins with the Ca(2+) storage organelles are discussed.  相似文献   

8.
9.
In the present study, we elucidated the potential cytotoxicity of AgNPs in H9c2 rat cardiomyoblasts and assessed the underlying toxicological manifestations responsible for their toxicity thereof. The results indicated that the exposure of AgNPs to H9c2 cardiac cells decreased cell viability in a dose-dependent manner and caused cell cycle arrest followed by induction of apoptosis. The AgNPs treated cardiac cells showed a generation of reactive oxygen species (ROS) and mitochondrial dysfunction where mitochondrial ATP was reduced and the expression of AMPK1α increased. AgNPs also induced ROS-mediated autophagy in H9c2 cells. There was a significant time-dependent increase in intracellular levels of Atg5, Beclin1, and LC3BII after exposure to AgNPs, signifying the autophagic response in H9c2 cells. More importantly, the addition of N-acetyl-L-cysteine (NAC) inhibited autophagy and significantly reduced the cytotoxicity of AgNPs in H9c2 cells. The study highlights the prospective toxicity of AgNPs on cardiac cells, collectively signifying a potential health risk.  相似文献   

10.
Autophagy is a cellular self-catabolic process in which cytoplasmic constituents are sequestered in double membrane vesicles that fuse with lysosomes where they are degraded. As this catabolic activity generates energy, autophagy is often induced under nutrient limiting conditions providing a mechanism to maintain cell viability and may be exploited by cancer cells for survival under metabolic stress. However, progressive autophagy can be cytotoxic and autophagy can under certain settings substitute for apoptosis in induction of cell death. Moreover, loss of autophagy is correlated with tumorigenesis and several inducers of autophagy are tumor-suppressor genes. Thus, the relation of autophagy to cancer development is complex and depends on the genetic composition of the cell as well as on the extra-cellular stresses a cell is exposed to. In this review we describe the intricate nature of autophagy and its regulators, particularly those that have been linked to cancer. We discuss the multifaceted relation of autophagy to tumorigenesis and highlight studies supporting a role for autophagy in both tumor-suppression and tumor-progression. Finally, various autophagy-targeting therapeutic strategies for cancer treatment are presented. This review is dedicated to the memory of Dr. Avner Eisenberg 1953–2004.  相似文献   

11.
Autophagy,the pathway whereby cell components are degraded by lysosomes,is involved in the cell response to environmental stresses,such as nutrient deprivation,hypoxia or exposition to chemotherapeutic agents.Under these conditions,which are reminiscent of certain phases of tumor development,autophagy either promotes cell survival or induces cell death. This strengthens the possibility that autophagy could be an important target in cancer therapy,as has been proposed.Here,we describe the regulation of survival and death by autophagy and apoptosis,especially in cultured breast cancer cells.In particular,we discuss whether autophagy represents an apoptosis-independent process and/or if they share common pathways. We believe that understanding in detail the molecular mechanisms that underlie the relationships between autophagy and apoptosis in breast cancer cells could improve the available treatments for this disease.  相似文献   

12.
Celastrus paniculatus is a traditional medicinal plant with diverse pharmacological activities. To identify its bioactive constituents, three new β-dihydroagarofuranoid sesquiterpenes were isolated from the whole plant, of which the major constituent is (1α,2α,8β,9β)-1,8-bis(acetyloxy)-2,9-bis(benzoyloxy)-14-hydroxy-β-dihydroagarofuran. It was assessed for its antiproliferative activity, and it suppressed the viability of MCF-7 breast cancer cells with an IC50 of 17 ± 1 μM. This growth inhibition was, in part, attributable to apoptosis. Moreover, this drug treatment led to LC3B-II accumulation, indicative of autophagy. Western blot analysis established its ability to target a broad range of signaling effectors related to survival and cell cycle progression, including Akt, NF-κB, p53, and MAP kinases. In addition, flow cytometry analysis indicates increased reactive oxygen species production in response to this compound. Taken together, these findings suggest a pleiotropic mode of mechanism that underlies the antiproliferative activity of this compound in MCF-7 breast cancer cells.  相似文献   

13.
Over-expression of σ receptors by many tumor cell lines makes ligands for these receptors attractive as potential chemotherapeutic drugs. Enantiomeric piperazines (S)-4 and (R)-4 were prepared as potential σ-receptor ligands in a chiral pool synthesis starting from (S)- and (R)-aspartate. Both compounds showed high affinities for the σ1 and σ2 receptors. In the human multiple myeloma cell line RPMI 8226, a line expressing high levels of σ receptors, both compounds inhibited cell proliferation with IC50 values in the low μM range. No chiral differentiation between either the σ receptor binding affinity or the cytotoxicity of the two enantiomers was observed. Both compounds induced apoptosis, which was evidenced by nuclear condensation, binding of annexin-V to phosphatidylserine in the outer leaf of the cell membrane, cleavage products of poly(ADP-ribose) polymerase-1 (PARP-1) and caspase-8 as well as the expression of bcl2 family members bax, bad and bid. However, apoptosis appeared to be caspase independent. Increased levels of the phosphorylated form of the microtubule associated protein light chain 3-II (LC3-II), an autophagosome marker, gave evidence that both compounds induced autophagy. However, further data (e.g., treatment with wortmannin) indicate that autophagy is incomplete and not cytoprotective. Lipid peroxidation (LPO) was observed in RPMI 8226 cells treated with the two compounds, and the lipid antioxidant α-tocopherol attenuated LPO. Interestingly, α-tocopherol reduced significantly both apoptosis and autophagy induced by the compounds. These results provide evidence that, by initiating LPO and changes in mitochondrial membrane potential, both compounds induce apoptosis and autophagy in RPMI 8226 cells.  相似文献   

14.
Teresa Monkkonen 《Autophagy》2018,14(2):190-198
Tumor-associated inflammation is predictive of poor prognosis and drives a variety of tumorigenic phenotypes, including tumor proliferation and survival, angiogenesis, invasiveness, and metastasis. Here, we review mammalian data addressing the interaction of macroautophagy/autophagy with key signaling cascades associated with tumor inflammation. Although our understanding of this area remains incomplete, certain inflammatory pathways have emerged as important mediators of the crosstalk between autophagy and inflammation in tumors. Consistent with the multifaceted roles for autophagy in tumor cells, results to date support the hypothesis that inflammatory pathways can suppress or induce autophagy in a context-dependent manner; in turn, autophagy suppresses or promotes inflammation in cancers. Furthermore, emerging data suggest that autophagy may influence cytokine production and secretion via diverse mechanisms, which has implications for the immune and inflammatory microenvironment in tumors.  相似文献   

15.
16.
Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.  相似文献   

17.
Understanding the mechanisms responsible for the resistance against chemotherapy-induced cell death is still of great interest since the number of patients with cancer increases and relapse is commonly observed. Indeed, the development of hypoxic regions as well as UPR (unfolded protein response) activation is known to promote cancer cell adaptive responses to the stressful tumor microenvironment and resistance against anticancer therapies. Therefore, the impact of UPR combined to hypoxia on autophagy and apoptosis activation during taxol exposure was investigated in MDA–MB-231 and T47D breast cancer cells. The results showed that taxol rapidly induced UPR activation and that hypoxia modulated taxol-induced UPR activation differently according to the different UPR pathways (PERK, ATF6, and IRE1α). The putative involvement of these signaling pathways in autophagy or in apoptosis regulation in response to taxol exposure was investigated. However, while no link between the activation of these three ER stress sensors and autophagy or apoptosis regulation could be evidenced, results showed that ATF4 activation, which occurs independently of UPR activation, was involved in taxol-induced autophagy completion. In addition, an ATF4-dependent mechanism leading to cancer cell adaptation and resistance against taxol-induced cell death was evidenced. Finally, our results demonstrate that expression of ATF4, in association with hypoxia-induced genes, can be used as a biomarker of a poor prognosis for human breast cancer patients supporting the conclusion that ATF4 might play an important role in adaptation and resistance of breast cancer cells to chemotherapy in hypoxic tumors.  相似文献   

18.
Autophagy is a highly regulated catabolic process in which superfluous,damaged organelles and other cytoplasmic constituents are delivered to the lysosome for clearance and the generation of macromolecule substrates during basal or stressed conditions. Autophagy is a bimodal process with a context dependent role in the initiation and the development of cancers. For instance,autophagy provides an adaptive response to cancer stem cells to survive metabolic stresses, by influencing disease propagation via modulation of essential signaling pathways or by promoting resistance to chemotherapeutics. Autophagy has been implicated in a cross talk with apoptosis. Understanding the complex interactions provides an opportunity to improve cancer therapy and the clinical outcome for the cancer patients. In this review, we provide a comprehensive view on the current knowledge on autophagy and its role in cancer cells with a particular focus on cancer stem cell homeostasis.  相似文献   

19.
Patients suffering from breast cancer (BC) still have a poor response to treatments, even though early detection and improved therapy have contributed to a reduced mortality. Recent studies have been inspired on the association between microRNAs (miRs) and therapies of BC. The current study set out to investigate the role of miR-216b in BC, and further analyze the underlining mechanism. Firstly, hexokinase 2 (HK2) and miR-216b were characterized in BC tissues and cells by RT-qPCR and Western blot assay. In addition, the interaction between HK2 and miR-216b was analyzed using dual luciferase reporter assay. BC cells were further transfected with a series of miR-216b mimic or inhibitor, or siRNA targeting HK2, so as to analyze the regulatory mechanism of miR-216b, HK2 and mammalian target of rapamycin (mTOR) signaling pathway, and to further explore their regulation in BC cellular behaviors. The results demonstrated that HK2 was highly expressed and miR-216b was poorly expressed in BC cells and tissues. HK2 was also verified as a target of miR-216b with online databases and dual luciferase reporter assay. Functionally, miR-216b was found to be closely associated with BC progression via inactivating mTOR signaling pathway by targeting HK2. Moreover, cell viability, migration and invasion were reduced as a result of miR-216b upregulation or HK2 silencing, while autophagy, cell cycle arrest and apoptosis were induced. Taken together, our findings indicated that miR-216b down-regulates HK2 to inactivate the mTOR signaling pathway, thus inhibiting the progression of BC. Hence, this study highlighted a novel target for BC treatment.  相似文献   

20.
Death-associated protein kinase 2 (DAPK2/DRP-1) belongs to a family of five related serine/threonine kinases that mediate a range of cellular processes, including membrane blebbing, apoptosis, and autophagy, and possess tumour suppressive functions. The three most conserved family members DAPK1/DAPK, DAPK2 and DAPK3/ZIPK share a high degree of homology in their catalytic domain, but differ significantly in their extra-catalytic structures and tissue-expression profiles. Hence, each orthologue binds to various unique interaction partners, localizes to different subcellular regions and controls some dissimilar cellular functions. In recent years, mechanistic studies have broadened our knowledge of the molecular mechanisms that activate DAPK2 and that execute DAPK2-mediated apoptosis, autophagy and inflammation. In this “molecules in focus” review on DAPK2, the structure, modes of regulation and various cellular functions of DAPK2 will be summarized and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号