首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
BackgroundPeroxidation of PUFAs by a variety of endogenous and xenobiotic electrophiles is a recognized pathophysiological process that can lead to adverse health effects. Although secondary products generated from peroxidized PUFAs have been relatively well studied, the role of primary lipid hydroperoxides in mediating early intracellular oxidative events is not well understood.MethodsLive cell imaging was used to monitor changes in glutathione (GSH) oxidation in HAEC expressing the fluorogenic sensor roGFP during exposure to 9-hydroperoxy-10E,12Z-octadecadienoic acid (9-HpODE), a biologically important long chain lipid hydroperoxide, and its secondary product 9-hydroxy-10E,12Z-octadecadienoic acid (9-HODE). The role of hydrogen peroxide (H2O2) was examined by direct measurement and through catalase interventions. shRNA-mediated knockdown of glutathione peroxidase 4 (GPx4) was utilized to determine its involvement in the relay through which 9-HpODE initiates the oxidation of GSH.ResultsExposure to 9-HpODE caused a dose-dependent increase in GSH oxidation in HAEC that was independent of intracellular or extracellular H2O2 production and was exacerbated by NADPH depletion. GPx4 was involved in the initiation of GSH oxidation in HAEC by 9-HpODE, but not that induced by exposure to H2O2 or the low molecular weight alkyl tert-butyl hydroperoxide (TBH).ConclusionsLong chain lipid hydroperoxides can directly alter cytosolic EGSH independent of secondary lipid oxidation products or H2O2 production. NADPH has a protective role against 9-HpODE induced EGSH changes. GPx4 is involved specifically in the reduction of long-chain lipid hydroperoxides, leading to GSH oxidation.SignificanceThese results reveal a previously unrecognized consequence of lipid peroxidation, which may provide insight into disease states involving lipid peroxidation in their pathogenesis.  相似文献   

3.
《Free radical research》2013,47(4):487-502
Abstract

Glutathione peroxidase (GPx) is a well-known seleno-enzyme that protects cells from oxidative stress (e.g., lipid peroxidation and oxidation of other cellular proteins and macromolecules), by catalyzing the reduction of harmful peroxides (e.g., hydrogen peroxide: H2O2) with reduced glutathione (GSH). However, the catalytic mechanism of GPx kinetics is not well characterized in terms of a mathematical model. We developed here a mechanistic mathematical model of GPx kinetics by considering a unified catalytic scheme and estimated the unknown model parameters based on different experimental data from the literature on the kinetics of the enzyme. The model predictions are consistent with the consensus that GPx operates via a ping-pong mechanism. The unified catalytic scheme proposed here for GPx kinetics clarifies various anomalies, such as what are the individual steps in the catalytic scheme by estimating their associated rate constant values and a plausible rationale for the contradicting experimental results. The developed model presents a unique opportunity to understand the effects of pH and product GSSG on the GPx activity under both physiological and pathophysiological conditions. Although model parameters related to the product GSSG were not identifiable due to lack of product-inhibition data, the preliminary model simulations with the assumed range of parameters show that the inhibition by the product GSSG is negligible, consistent with what is known in the literature. In addition, the model is able to simulate the bi-modal behavior of the GPx activity with respect to pH with the pH-range for maximal GPx activity decreasing significantly as the GSH levels decrease and H2O2 levels increase (characteristics of oxidative stress). The model provides a key component for an integrated model of H2O2 balance under normal and oxidative stress conditions.  相似文献   

4.
Acetaldehyde, the primary ethanol metabolite, has been implicated in the pathogenesis of alcoholic liver disease, but the mechanism involved is still under investigation. This study aims at the search for direct in vitro effects of different concentrations of acetaldehyde (30, 100 and 300microM) on the activities of glutathione reductase (GR), glutathione peroxidase (GPx) from liver supernatants, and the thiol-peroxidase activity of ebselen. They did not change after pre-incubation with acetaldehyde, which suggests that acetaldehyde does not have any direct effect. Nor were direct effects of acetaldehyde toward thiols, such as dithioerythritol and glutathione (GSH), observed either, even though GSH - measured as non-protein thiols from liver supernatants - were oxidized in the presence of acetaldehyde. In addition, acetaldehyde (up to 300microM) significantly oxidized GSH when incubated in the presence of commercially available gamma-glutamyltranspeptidase (GGT), but not in the presence of glutathione-S-transferase. The interaction between ebselen and GSH was also evaluated in an attempt to better understand the possible link between acetaldehyde and nucleophilic selenol groups. The formation and stability of ebselen intermediaries, produced in the chemical interaction between GSH and ebselen, were not affected by acetaldehyde either. Overall, the acetaldehyde oxidation of hepatic low-molecular thiols depends on mouse liver constituents and GGT is proposed as an important enzyme involved in this phenomenon. Thiol depletion, a phenomenon usually observed in the livers of alcoholic patients, can be related to GSH metabolism, and the involvement of GGT may reflect a molecular mechanism involved in thiol oxidation.  相似文献   

5.
The effects of two glycosylated whey hydrolysates (GWH-Gal A and GWH-Gal B) on glutathione (GSH) and related antioxidant enzymes in SGC-7901 cells were evaluated. Two whey glycosylated hydrolysates promoted an increase in reduced glutathione (GSH) in normal SGC-7901 cells. GSH, glutathione peroxidase (GPx), γ-glutamine cysteine synthetaase (γ-GCS), and catalase (CAT) at 1.0 and 2.0 mg/mL in normal SGC-7901 cells were higher in the GWH-Gal A group than in the GWH-Gal B group (P < 0.05). Compared with GWH-Gal B, GWH-Gal A more strongly inhibited decreases in intracellular GSH, GPx, γ-GCS, CAT, and superoxide dismutase (SOD) in H2O2-induced SGC-7901 cells. Compared with GWH-Gal B, GWH-Gal A at 1.0 and 2.0 mg/mL effectively inhibited increases in lactate dehydrogenase (LDH) and malondialdehyde (MDA) in H2O2-induced SGC-7901 cells (P < 0.05). Therefore, GSH content and related antioxidant enzyme activity levels (GPx, γ-GCS, CAT, SOD) in both normal and H2O2-induced SGC-7901 cells were considerably stronger in the GWH-Gal A group than in the GWH-Gal B group.  相似文献   

6.
Organoselenium compounds, such as diphenyl diselenide (PhSe)2 and phenylselenium zinc chloride (PhSeZnCl), show protective activities related to their thiol peroxidase activity. However, depending on experimental conditions, organoselenium compounds can cause toxicity by oxidising thiol groups of proteins and induce the production of reactive oxygen species (ROS). Here, we analysed the toxicity of (PhSe)2 and PhSeZnCl in yeast Saccharomyces cerevisiae. Cell growth of S. cerevisiae after 1, 2, 3, 4, 6, and 16?h of treatment with 2, 4, 6, and 10?μM of (PhSe)2 was evaluated. For comparative purpose, PhSeZnCl was analysed only at 16?h of incubation at equivalent concentrations of selenium (i.e. 4, 8, 12, and 20?μM). ROS production (DCFH-DA), size, granularity, and cell membrane permeability (propidium iodide) were determined by flow cytometry. (PhSe)2 inhibited cell growth at 2?h (10?μM) of incubation, followed by increase in cell size. The increase of cell membrane permeability and granularity (10?μM) was observed after 3?h of incubation, however, ROS production occurs only at 16?h of incubation (10?μM) with (PhSe)2, indicating that ROS overproduction is a more likely consequence of (PhSe)2 toxicity and not its determinant. All tested parameters showed that only concentration of 20?μM induced toxicity in samples incubated with PhSeZnCl. In summary, the results suggest that (PhSe)2 toxicity in S. cerevisiae is time and concentration dependent, presenting more toxicity when compared with PhSeZnCl.  相似文献   

7.
The present study investigated the role of the glutathione system in seizures induced by diphenyl diselenide (PhSe)2 (50 mg/kg) in rat pups (post natal day, 12–14). Reduced glutathione (GSH) (300 nmol/site; i.c.v.), administered 20 min before (PhSe)2, abolished the appearance of seizures, protected against the inhibition of catalase and δ-aminolevulinic dehydratase (δ-ALA-D) activities and increased glutathione peroxidase (GPx) activity induced by (PhSe)2. Administration of l-buthionine sulfoximine (BSO, a GSH-depleting compound) (3.2 μmol/site; i.c.v.) 24 h before (PhSe)2 increased the percentage (42–100%) of rat pups which had seizure episodes, reduced the onset for the first convulsive episode. In addition, BSO increased thiobarbituric acid reactive species (TBARS) levels and decreased GSH content, catalase, δ-ALA-D and Na+, K+-ATPase activities. Treatment with sub effective doses of GSH (10 nmol/site) and d-2-amino-7-phosphonoheptanoic acid (AP-7, an antagonist of the glutamate site at the NMDA receptor; 5 mg/kg, i.p.) abolished the appearance of seizures induced by (PhSe)2 in rat pups. Sub effective doses of GSH and kynurenic acid (an antagonist of strychnine-insensitive glycine site at the NMDA receptor; 40 mg/kg, i.p.) were also able in abolishing the appearance of seizures induced by (PhSe)2. In conclusion, administration of GSH protected against seizure episodes induced by (PhSe)2 in rat pups by reducing oxidative stress and, at least in part, by acting as an antagonist of glutamate and glycine modulatory sites in the NMDA receptor.  相似文献   

8.
9.
Prooxidant and cytotoxic effects of thiols N-acetylcysteine (NAC) and glutathione (GSH) were studied in combinations with vitamin B12b. Both GSH and NAC at physiological doses when combined with B12b were shown to cause initiation of apoptosis. It was established that the prooxidant action of NAC (or GSH) combined with B12b, i.e., generation and accumulation of hydrogen peroxide in culture medium, led to intractellular oxidative stress and cell redox imbalance. These effects are completely prevented by nonthiol antioxidants catalase and pyruvate. The chelators of iron phenanthroline and deferoxamine do not suppress the H2O2 accumulation in culture medium, but inhibit cell death induced by NAC combined with B12b or by GSH combined with B12b. Therefore, the thiols GSH or NAC in combination with vitamin B12b reveal prooxidant properties and induce, with participation of intracellular iron, apoptotic HEp-2 cell death.  相似文献   

10.
The glutathione peroxidase homologs (GPxs) efficiently reduce hydroperoxides using electrons from glutathione (GSH), thioredoxin (Trx), or protein disulfide isomerase (PDI). Trx is preferentially used by the GPxs of the majority of bacteria, invertebrates, plants, and fungi. GSH or PDI, instead, is preferentially used by vertebrate GPxs that operate by Sec or Cys catalysis, respectively. Mammalian GPx7 and GPx8 are unique homologs that contain a peroxidatic Cys (CP). Being reduced by PDI and located within the endoplasmic reticulum (ER), these enzymes have been involved in oxidative protein folding. Kinetic analysis indicates that oxidation of PDI by recombinant GPx7 occurs at a much faster rate than that of GSH. Nonetheless, activity measurement suggests that, at physiological concentrations, a competition between these two substrates takes place, with the rate of PDI oxidation by GPx7 controlled by the concentration of GSH, whereas the GSSG produced in the competing reaction contributes to the ER redox buffer. A mechanism has been proposed for GPx7 involving two Cys residues, in which an intramolecular disulfide of the CP is formed with an alleged resolving Cys (CR) located in the strongly conserved FPCNQ motif (C86 in humans), a noncanonical position in GPxs. Kinetic measurements and comparison with the other thiol peroxidases containing a functional CR suggest that a resolving function of C86 in the catalytic cycle is very unlikely. We propose that GPx7 is catalytically active as a 1-Cys-GPx, in which CP both reduces H2O2 and oxidizes PDI, and that the CP-C86 disulfide has instead the role of stabilizing the oxidized peroxidase in the absence of the reducing substrate.  相似文献   

11.
Rosebush (Rosa “Radrazz”) plants are an excellent model to study light control of bud outgrowth since bud outgrowth only arises in the presence of light and never occurs in darkness. Recently, we demonstrated high levels of hydrogen peroxide (H2O2) present in the quiescent axillary buds strongly repress the outgrowth process. In light, the outgrowing process occurred after H2O2 scavenging through the promotion of Ascorbic acid–Glutathione (AsA–GSH)-dependent pathways and the continuous decrease in H2O2 production. Here we showed Respiratory Burst Oxidase Homologs expression decreased in buds during the outgrowth process in light. In continuous darkness, the same decrease was observed although H2O2 remained at high levels in axillary buds, as a consequence of the strong inhibition of AsA–GSH cycle and GSH synthesis preventing the outgrowth process. Cytokinin (CK) application can evoke bud outgrowth in light as well as in continuous darkness. Furthermore, CKs are the initial targets of light in the photocontrol process. We showed CK application to cultured buds in darkness decreases bud H2O2 to a level that is similar to that observed in light. Furthermore, this treatment restores GSH levels and engages bud burst. We treated plants with buthionine sulfoximine, an inhibitor of GSH synthesis, to solve the sequence of events involving H2O2/GSH metabolisms in the photocontrol process. This treatment prevented bud burst, even in the presence of CK, suggesting the sequence of actions starts with the positive CK effect on GSH that in turn stimulates H2O2 scavenging, resulting in initiation of bud outgrowth.

Light-induced bud outgrowth in rosebush results from cytokinin-mediated peroxide scavenging and glutathione metabolism stimulation.  相似文献   

12.
Ceruloplasmin (CP), a ferroxidase (EC 1.16.3.1) and a scavenger of reactive oxygen species, is an important extracellular antioxidant. Bovine CP indeed protects the isolated heart under ischemia–reperfusion conditions. Human CP has been shown to also exhibit, in vitro, glutathione (GSH)-peroxidase and nitric oxide (NO)-oxidase/S-nitrosating activities. This work tested, using bovine CP, the hypothesis that both activities could provide cytoprotection during oxidative stress induced by hydrogen peroxide (H2O2), the former activity by consuming H2O2 and the latter by shielding thiols from irreversible oxidation. In acellular assays, bovine CP stimulated the generation of the nitrosating NO+ species from the NO donors propylaminepropylamine-NONOate (PAPA/NO), S-nitroso-N-acetylpenicillamine, and S-nitrosoglutathione. This NO-oxidase activity S-nitrosated GSH as well as CP itself and was not affected by H2O2. In contrast to human CP, bovine CP consumed H2O2 in an additive rather than synergistic manner in the presence of GSH. A nonenzymatic scavenging of H2O2 could have masked the GSH-peroxidase activity. Cytoprotection was evaluated using neonatal rat cardiomyocytes. CP and PAPA/NO were not protective against the H2O2-induced loss of viability. In contrast, GSH provided a slight protection that increased more than additively in the presence of CP. This increase was canceled by PAPA/NO. CP's putative GSH-peroxidase activity can thus provide cytoprotection but is possibly affected by the S-nitrosation of a catalytically important cysteine residue.  相似文献   

13.
Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m−1 s−1) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.  相似文献   

14.
This study was conducted to investigate how the activity and expression of certain paramount antioxidant enzymes respond to grape seed extract (GSE) addition in primary muscle cells of goats. Gluteal primary muscle cells (PMCs) isolated from a 3-week old goat were cultivated as an unstressed cell model, or they were exposed to 100 µM H2O2 to establish a H2O2-stimulated cell model. The activities of catalase (CAT), superoxide dismutases (SOD) and glutathione peroxidases (GPx) in combination with other relevant antioxidant indexes [i.e., reduced glutathione (GSH) and total antioxidant capacity (TAOC)] in response to GSE addition were tested in the unstressed and H2O2-stimulated cell models, and the relative mRNA levels of the CAT, GuZu-SOD, and GPx-1 genes were measured by qPCR. In unstressed PMCs, GSE addition at the dose of 10 µg/ml strikingly attenuated the expression levels of CAT and CuZn-SOD as well as the corresponding enzyme activities. By contrast, in cells pretreated with 100 µM H2O2, the expression and activity levels of these two antioxidant enzymes were enhanced by GSE addition at 10 µg/ml. GSE addition promoted GPx activity in both unstressed and stressed PMCs, while the expression of the GPx 1 gene displayed partial divergence with GPx activity, which was mitigated by GSE addition at 10 µg/ml in unstressed PMCs. GSH remained comparatively stable except for GSE addition to H2O2-stimulated PMCs at 60 µg/ml, in which a dramatic depletion of GSH occurred. Moreover, GSE addition enhanced TAOC in unstressed (but not H2O2-stimulated) PMCs. GSE addition exerted a bidirectional modulating effect on the mRNA levels and activities of CAT and SOD in unstressed and stressed PMCs at a moderate dose, and it only exhibited a unidirectional effect on the promotion of GPx activity, reflecting its potential to improve antioxidant protection in ruminants.  相似文献   

15.
Index     
Hydrogen peroxide (H2O2) can induce cell damage by generating reactive oxygen species (ROS), resulting in DNA damage and cell death. The aim of this study is to elucidate the protective effects of fisetin (3,7,3′,4′,-tetrahydroxy flavone) against H2O2-induced cell damage. Fisetin reduced the level of superoxide anion, hydroxyl radical in cell free system, and intracellular ROS generated by H2O2. Moreover, fisetin protected against H2O2-induced membrane lipid peroxidation, cellular DNA damage, and protein carbonylation, which are the primary cellular outcomes of H2O2 treatment. Furthermore, fisetin increased the level of reduced glutathione (GSH) and expression of glutamate-cysteine ligase catalytic subunit, which is decreased by H2O2. Conversely, a GSH inhibitor abolished the cytoprotective effect of fisetin against H2O2-induced cells damage. Taken together, our results suggest that fisetin protects against H2O2-induced cell damage by inhibiting ROS generation, thereby maintaining the protective role of the cellular GSH system.  相似文献   

16.
17.
18.
Intracellular redox homeostasis is crucial for many cellular functions but accurate measurements of cellular compartment-specific redox states remain technically challenging. To better characterize redox control in the nucleus, we targeted a yellow fluorescent protein-based redox sensor (rxYFP) to the nucleus of the yeast Saccharomyces cerevisiae. Parallel analyses of the redox state of nucleus-rxYFP and cytosol-rxYFP allowed us to monitor distinctively dynamic glutathione (GSH) redox changes within these two compartments under a given condition. We observed that the nuclear GSH redox environment is highly reducing and similar to the cytosol under steady-state conditions. Furthermore, these sensors are able to detect redox variations specific for their respective compartments in glutathione reductase (Glr1) and thioredoxin pathway (Trr1, Trx1, Trx2) mutants that have altered subcellular redox environments. Our mutant redox data provide in vivo evidence that glutathione and the thioredoxin redox systems have distinct but overlapping functions in controlling subcellular redox environments. We also monitored the dynamic response of nucleus-rxYFP and cytosol-rxYFP to GSH depletion and to exogenous low and high doses of H2O2 bursts. These observations indicate a rapid and almost simultaneous oxidation of both nucleus-rxYFP and cytosol-rxYFP, highlighting the robustness of the rxYFP sensors in measuring real-time compartmental redox changes. Taken together, our data suggest that the highly reduced yeast nuclear and cytosolic redox states are maintained independently to some extent and under distinct but subtle redox regulation. Nucleus- and cytosol-rxYFP register compartment-specific localized redox fluctuations that may involve exchange of reduced and/or oxidized glutathione between these two compartments. Finally, we confirmed that GSH depletion has profound effects on mitochondrial genome stability but little effect on nuclear genome stability, thereby emphasizing that the critical requirement for GSH during growth is linked to a mitochondria-dependent process.  相似文献   

19.
20.
Hydrogen peroxide (H2O2) is a key signaling molecule that also induces apoptosis. Thus, cells must rapidly sense and tightly control H2O2 levels. Well-characterized cellular responses to exogenous H2O2 involve oxidation of specific cytosolic protein-based thiols but sensing of H2O2 generated by mitochondrial respiration is less well described. Here we provide substantial biochemical evidence that the heme enzyme Ccp1 (cytochrome c peroxidase), which is targeted to the intermembrane space, functions primarily as a mitochondrial H2O2 sensing and signaling protein in Saccharomyces cerevisiae. Key evidence for a sensing role for Ccp1 is the significantly higher H2O2 accumulation in ccp1-null cells(ccp1Δ) vs ccp1W191F cells producing the catalytically inactive Ccp1W191F variant. In fact, intracellular H2O2 levels (ccp1Δ>wildtype >ccp1W191F) correlate inversely with the activity of the mitochondrial (and peroxisomal) heme catalase, Cta1 (ccp1Δ<wildtype <ccp1W191F). Mitochondrial Sod2 activity also varies in the three strains (ccp1Δ>wildtype >ccp1W191F) and ccp1Δ cells exhibit low superoxide levels. Notably, Ccp1W191F is a more persistent H2O2 signaling protein than wild-type Ccp1, and this enhanced mitochondrial H2O2 signaling decreases the mitochondrial fitness of ccp1W191F cells. However, these cells are fully protected from a bolus (0.4 mM) of exogenous H2O2 added after 12 h of growth, whereas the viability of ccp1Δ cells drops below 20%, which additionally associates Ccp1 with Yap1-dependent H2O2 signaling. Combined, our results strongly implicate Ccp1, independent of its peroxidase activity, in mitochondrial H2O2 sensing and signaling to maintain reactive oxygen species homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号