首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ferroptosis is a newly discovered type of cell death that differs from traditional apoptosis and necrosis and results from iron‐dependent lipid peroxide accumulation. Ferroptotic cell death is characterized by cytological changes, including cell volume shrinkage and increased mitochondrial membrane density. Ferroptosis can be induced by two classes of small‐molecule substances known as class 1 (system X c ? inhibitors) and class 2 ferroptosis inducers [glutathione peroxidase 4 (GPx4) inhibitors]. In addition to these small‐molecule substances, a number of drugs (e.g. sorafenib, artemisinin and its derivatives) can induce ferroptosis. Various factors, such as the mevalonate (MVA) and sulphur‐transfer pathways, play pivotal roles in the regulation of ferroptosis. Ferroptosis plays an unneglectable role in regulating the growth and proliferation of some types of tumour cells, such as lymphocytoma, ductal cell cancer of the pancreas, renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC). Here, we will first introduce the discovery of and research pertaining to ferroptosis; then summarize the induction mechanisms and regulatory pathways of ferroptosis; and finally, further elucidate the roles of ferroptosis in human tumourous diseases.  相似文献   

2.
铁死亡(ferroptosis)是2012年新发现的一种非凋亡的细胞死亡形式,其实质是依赖铁离子的活性氧(reactive oxygen species,ROS)和脂质氢过氧化物蓄积导致的线粒体形态改变和细胞膜磷脂过氧化损伤。铁死亡与许多肾脏疾病的病理生理进程密切相关。然而铁死亡参与肾脏疾病损伤的分子生物学机制尚缺乏系统和深入的认识。针对铁死亡的调控机制、研究进展及其在肾脏相关疾病中的作用作一综述,以期为肾脏疾病的治疗提供新思路、新靶点。  相似文献   

3.
Ferroptosis is a type of cell death that depends on iron and reactive oxygen species (ROS). The accumulation of iron and lipid peroxidation primarily initiates oxidative membrane damage during ferroptosis. The core molecular mechanism of ferroptosis includes the regulation of oxidation and the balance between damage and antioxidant defense. Tumor cells usually contain a large amount of H2O2, and ferrous/iron ions will react with excessive H2O2 in cells to produce hydroxyl radicals and induce ferroptosis in tumor cells. Here, we reviewed the latest studies on the regulation of ferroptosis in tumor cells and introduced the tumor-related signaling pathways of ferroptosis. We paid particular attention to the role of noncoding RNA, nanomaterials, the role of drugs, and targeted treatment using ferroptosis drugs for mediating the ferroptosis process in tumor cells. Finally, we discussed the currently unresolved problems and future research directions for ferroptosis in tumor cells and the prospects of this emerging field. Therefore, we have attempted to provide a reference for further understanding of the pathogenesis of ferroptosis and proposed new targets for cancer treatment.Subject terms: Cancer, Cell death, Non-coding RNAs  相似文献   

4.
5.
Ferroptosis, a new form of programmed cell death, not only promotes the pathological process of various human diseases, but also regulates cancer progression. Current perspectives on the underlying mechanisms remain largely unknown. Herein, we report a member of the NEET protein family, CISD3, exerts a regulatory role in cancer progression and ferroptosis both in vivo and in vitro. Pan-cancer analysis from TCGA reveals that expression of CISD3 is generally elevated in various human cancers which are consequently associated with a higher hazard ratio and poorer overall survival. Moreover, knockdown of CISD3 significantly accelerates lipid peroxidation and accentuates free iron accumulation triggered by Xc inhibition or cystine-deprivation, thus causing ferroptotic cell death. Conversely, ectopic expression of the shRNA-resistant form of CISD3 (CISD3res) efficiently ameliorates the ferroptotic cell death. Mechanistically, CISD3 depletion presents a metabolic reprogramming toward glutaminolysis, which is required for the fuel of mitochondrial oxidative phosphorylation. Both the inhibitors of glutaminolysis and the ETC process were capable of blocking the lipid peroxidation and ferroptotic cell death in the shCISD3 cells. Besides, genetic and pharmacological activation of mitophagy can rescue the CISD3 knockdown-induced ferroptosis by eliminating the damaged mitochondria. Noteworthily, GPX4 acts downstream of CISD3 mediated ferroptosis, which fails to reverse the homeostasis of mitochondria. Collectively, the present work provides novel insights into the regulatory role of CISD3 in ferroptotic cell death and presents a potential target for advanced antitumor activity through ferroptosis.Subject terms: Oncogenes, Preclinical research  相似文献   

6.
Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by excessive lipid peroxidation and associated with a plethora of pathological conditions in the liver. Emerging evidence supports the notion that dysregulated metabolic pathways and impaired iron homeostasis play a role in the progression of liver disease via ferroptosis. Although the molecular mechanisms by which ferroptosis causes disease are poorly understood, several ferroptosis-associated genes and pathways have been implicated in liver disease. Here, we review the physiological role of the liver in processing nutrients, our current understanding of iron metabolism, the characteristics of ferroptosis, and the mechanisms that regulate ferroptosis. In addition, we summarize the role of ferroptosis in the pathogenesis of liver disease, including liver injury, non-alcoholic steatohepatitis, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Finally, we discuss the therapeutic potential of targeting ferroptosis for managing liver disease.Subject terms: Translational research, Autophagy, Experimental models of disease  相似文献   

7.
Ferroptosis is a regulated form of cell death characterized by the iron-dependent accumulation of lipid hydroperoxides. Ceruloplasmin (CP) is a glycoprotein that plays an essential role in iron homeostasis. However, whether CP regulates ferroptosis has not been reported. Here, we show that CP suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma (HCC) cells. Depletion of CP promoted erastin- and RSL3-induced ferroptotic cell death and resulted in the accumulation of intracellular ferrous iron (Fe2+) and lipid reactive oxygen species (ROS). Moreover, overexpression of CP suppressed erastin- and RSL3-induced ferroptosis in HCC cells. In addition, a novel frameshift mutation (c.1192-1196del, p.leu398serfs) of CP gene newly identified in patients with iron accumulation and neurodegenerative diseases lost its ability to regulate iron homeostasis and thus failed to participate in the regulation of ferroptosis. Collectively, these data suggest that CP plays an indispensable role in ferroptosis by regulating iron metabolism and indicate a potential therapeutic approach for hepatocellular carcinoma.  相似文献   

8.
BackgroundIron is essential for many types of biological processes. However, excessive iron can be cytotoxic and can lead to many diseases. Since ferroptosis, which is an iron-dependent regulated form of necrosis, was recently discovered, iron and iron-catalysed oxidative stress have attracted much interest because of their sophisticated mechanism of cellular signalling leading to cell death and associated with various diseases.Scope of reviewIn this review, we first focus on how iron catalyses reactive oxygen species (ROS). Next, we discuss the roles of iron in cell death and senescence and, in particular, the downstream signalling pathways of ROS. Finally, we discuss the potential regulation mechanism of iron as a therapeutic target for various iron-related diseases.Major conclusionsBoth labile iron released from organelles upon various stresses and iron incorporated in enzymes produce ROS, including lipid ROS. ROS produced by iron activates various signalling pathways, including mitogen-activated protein kinase (MAPK) signalling pathways such as the apoptosis signal-regulating kinase 1 (ASK1)-p38/JNK pathway. These ROS-activated signalling pathways regulate senescence or cell death and are linked to cancer, ischaemia-reperfusion injury during transplantation and ageing-related neurodegenerative diseases.General significanceIron overload damages cells and causes harmful effects on the body through oxidative stress. Thus, understanding the spatiotemporal availability of iron and the role of iron in generating ROS will provide clues for the suppression of ROS and cytotoxic redox-active iron. Moreover, elucidating the molecular mechanisms and signalling pathways of iron-dependent cytotoxicity will enable us to find novel therapeutic targets for various diseases.  相似文献   

9.
Retinal pigment epithelium (RPE) degeneration plays an important role in a group of retinal disorders such as retinal degeneration (RD) and age-related macular degeneration (AMD). The mechanism of RPE cell death is not yet fully elucidated. Ferroptosis, a novel regulated cell death pathway, participates in cancer and several neurodegenerative diseases. Glutathione peroxidase 4 (GPx-4) and ferroptosis suppressor protein 1 (FSP1) have been proposed to be two main regulators of ferroptosis in these diseases; yet, their roles in RPE degeneration remain elusive. Here, we report that both FSP1-CoQ10-NADH and GSH-GPx-4 pathways inhibit retinal ferroptosis in sodium iodate (SIO)-induced retinal degeneration pathologies in human primary RPE cells (HRPEpiC), ARPE-19 cell line, and mice. GSH-GPx-4 signaling was compromised after a toxic injury caused by SIO, which was aggravated by silencing GPx-4, and ferroptosis inhibitors robustly protected RPE cells from the challenge. Interestingly, while inhibition of FSP1 caused RPE cell death, which was aggravated by SIO exposure, overexpression of FSP1 effectively protected RPE cells from SIO-induced injury, accompanied by a significant down-regulation of CoQ10/NADH and lipid peroxidation. Most importantly, in vivo results showed that Ferrostatin-1 not only remarkably alleviated SIO-induced RPE cell loss, photoreceptor death, and retinal dysfunction but also significantly ameliorated the compromised GSH-GPx-4 and FSP1-CoQ10-NADH signaling in RPE cells isolated from SIO-induced RPE degeneration. These data describe a distinct role for ferroptosis in controlling RPE cell death in vitro and in vivo and may provide a new avenue for identifying treatment targets for RPE degeneration.Subject terms: Apoptosis, Neurodegenerative diseases, Experimental models of disease  相似文献   

10.
铁死亡是一种由脂质过氧化驱动的铁依赖性的新的细胞死亡方式,越来越多的证据表明,铁死亡与各种病理状态有关,如神经退行性疾病、糖尿病肾病、癌症等,脂质过氧化驱动的铁死亡可能促进或抑制这些疾病的发生发展,细胞中抗氧化系统通过抑制脂质过氧化在抵抗铁死亡过程中发挥着重要作用。铁死亡的关键通路有以SLC7A11-GPX4为关键分子的氨基酸代谢通路、以铁蛋白或转铁蛋白为主的铁代谢通路,以及脂质代谢通路。铁死亡的发生受到细胞内蛋白质的调节,这些蛋白质会发生各种翻译后修饰,包括泛素化修饰。泛素-蛋白酶体系统(ubiquitin-proteasome system,UPS)是细胞内主要降解系统之一,通过酶促级联反应催化泛素分子标记待降解蛋白,随后由蛋白酶体识别并降解目标蛋白质。UPS根据其降解底物的不同在调节铁死亡的反应中发挥双重作用。UPS通过促进铁死亡关键分子(如SLC7A11、GPX4、GSH)以及抗氧化系统成分(如NRF2)的泛素化降解从而促进铁死亡,也可以通过促进脂质代谢通路中相关分子(如ACSL4、ALOX15)的泛素化降解从而抑制铁死亡。本综述介绍泛素化修饰在调控铁死亡进程中作用的最新研究进展,总结了已发表的关于E3泛素连接酶和去泛素酶调控铁死亡的研究,归纳了泛素连接酶、去泛素酶调控铁死亡的作用靶点,有助于确定人类疾病中新的预后指标,为这些疾病提供潜在的治疗策略。  相似文献   

11.
Ferroptosis is a newly discovered type of regulated cell death, characterized by the iron-dependent accumulation of lipid reactive oxygen species, which has been implicated in numerous human diseases. However, its role in pulmonary fibrosis, a fatal lung disease with unknown etiology, is largely unknown. Here, we investigated the role of ferroptosis in pulmonary fibrosis. We found a large amount of iron deposition in the lung tissue of patients with pulmonary fibrosis. We observed ferroptosis in alveolar type II (ATII) cells, fibrotic lung tissues of BLM-induced pulmonary fibrosis mice. BLM-induced increase in iron level was accompanied by pathological changes, collagen deposition, and ferroptosis in ATII cells, indicating iron deposition-induced ferroptosis, which promoted the development of pulmonary fibrosis. Moreover, deferoxamine (DFO) completely prevented the pro-fibrosis effects of BLM by reducing iron deposition and ferroptosis in ATII cells. Genes associated with intracellular iron metabolism and homeostasis, such as transferrin receptor 1, divalent metal transporter 1, and ferroportin-1, and showed abnormal expression levels in animal tissues and lung epithelial MLE-12 cells, which responded to BLM stimulation. Overall, we demonstrated that BLM-induced iron deposition in MLE-12 cells is prone to both mitochondrial dysfunction and ferroptosis and that DFO reverses this phenotype. In the future, understanding the role of ferroptosis may shed new light on the etiology of pulmonary fibrosis. Ferroptosis inhibitors or genetic engineering of ferroptosis-related genes might offer potential targets to treat pulmonary fibrosis.  相似文献   

12.
13.
Iron is vital for many physiological functions, including energy production, and dysregulated iron homeostasis underlies a number of pathologies. Ferroptosis is a recently recognized form of regulated cell death that is characterized by iron dependency and lipid peroxidation, and this process has been reported to be involved in multiple diseases. The mechanisms underlying ferroptosis are complex, and involve both well-described pathways (including the iron-induced Fenton reaction, impaired antioxidant capacity, and mitochondrial dysfunction) and novel interactions linked to cellular energy production. In this review, we examine the contribution of iron to diverse metabolic activities and their relationship to ferroptosis. There is an emphasis on the role of iron in driving energy production and its link to ferroptosis under both physiological and pathological conditions. In conclusion, excess reactive oxygen species production driven by disordered iron metabolism, which induces Fenton reaction and/or impairs mitochondrial function and energy metabolism, is a key inducer of ferroptosis.Subject terms: Cell biology, Biochemistry  相似文献   

14.
Iron homeostasis disturbance has been implicated in Alzheimer’s disease (AD), and excess iron exacerbates oxidative damage and cognitive defects. Ferroptosis is a nonapoptotic form of cell death dependent upon intracellular iron. However, the involvement of ferroptosis in the pathogenesis of AD remains elusive. Here, we report that ferroportin1 (Fpn), the only identified mammalian nonheme iron exporter, was downregulated in the brains of APPswe/PS1dE9 mice as an Alzheimer’s mouse model and Alzheimer’s patients. Genetic deletion of Fpn in principal neurons of the neocortex and hippocampus by breeding Fpnfl/fl mice with NEX-Cre mice led to AD-like hippocampal atrophy and memory deficits. Interestingly, the canonical morphological and molecular characteristics of ferroptosis were observed in both Fpnfl/fl/NEXcre and AD mice. Gene set enrichment analysis (GSEA) of ferroptosis-related RNA-seq data showed that the differentially expressed genes were highly enriched in gene sets associated with AD. Furthermore, administration of specific inhibitors of ferroptosis effectively reduced the neuronal death and memory impairments induced by Aβ aggregation in vitro and in vivo. In addition, restoring Fpn ameliorated ferroptosis and memory impairment in APPswe/PS1dE9 mice. Our study demonstrates the critical role of Fpn and ferroptosis in the progression of AD, thus provides promising therapeutic approaches for this disease.Subject terms: Neural ageing, Ageing  相似文献   

15.
Sorafenib, a protein kinase inhibitor approved for the treatment of hepatocellular carcinoma and advanced renal cell carcinoma, has been repeatedly reported to induce ferroptosis by possibly involving inhibition of the cystine/glutamate antiporter, known as system xc. Using a combination of well-defined genetically engineered tumor cell lines and canonical small molecule ferroptosis inhibitors, we now provide unequivocal evidence that sorafenib does not induce ferroptosis in a series of tumor cell lines unlike the cognate system xc inhibitors sulfasalazine and erastin. We further show that only a subset of tumor cells dies by ferroptosis upon sulfasalazine and erastin treatment, implying that certain cell lines appear to be resistant to system xc inhibition, while others undergo ferroptosis-independent cell death. From these findings, we conclude that sorafenib does not qualify as a bona fide ferroptosis inducer and that ferroptosis induced by system xc inhibitors can only be achieved in a fraction of tumor cell lines despite robust expression of SLC7A11, the substrate-specific subunit of system xc.Subject terms: Cell death, Small molecules  相似文献   

16.
Iron homeostasis is crucial for maintaining proper cellular function, and its disruption is considered one of the pathogenic mechanisms underlying musculoskeletal diseases. Under conditions of oxidative stress, the accumulation of cellular iron overload and lipid peroxidation can lead to ferroptosis. Extracellular vesicles (EVs), serving as mediators in the cell-to-cell communication, play an important role in regulating the outcome of cell ferroptosis. Growing evidence has proven that EV biogenesis and secretion are tightly associated with cellular iron export. Furthermore, different sources of EVs deliver diverse cargoes to bring about phenotypic changes in the recipient cells, either activating or inhibiting ferroptosis. Thus, delivering therapies targeting ferroptosis through EVs may hold significant potential for treating musculoskeletal diseases. This review aims to summarize current knowledge on the role of EVs in iron homeostasis and ferroptosis, as well as their therapeutic applications in musculoskeletal diseases, and thereby provide valuable insights for both research and clinical practice.  相似文献   

17.
铁是血红素、线粒体呼吸链复合体和各种生物酶的重要辅助因子,参与氧气运输、氧化还原反应和代谢物合成等生物过程。铁蛋白(ferritin)是一种铁存储蛋白质,通过储存和释放铁来维持机体内铁平衡。铁自噬(ferritinophagy)作为一种选择性自噬方式,介导铁蛋白降解释放游离铁,参与细胞内铁含量的调控。适度铁自噬维持细胞内铁含量稳定,但铁自噬过度会释放出大量游离铁。通过芬顿 (Fenton)反应催化产生大量的活性氧(reactive oxygen species, ROS),发生脂质过氧化造成细胞受损。因此,铁自噬在维持细胞生理性铁稳态中发挥至关重要的作用。核受体共激活因子4 (nuclear receptor co-activator 4, NCOA4)被认为是铁自噬的关键调节因子,与铁蛋白靶向结合,并传递至溶酶体中降解释放游离铁,其介导的铁自噬构成了铁代谢的重要组成部分。最新研究表明,NCOA4受体内铁含量、自噬、溶酶体和低氧等因素的调控。NCOA4介导的铁蛋白降解与铁死亡(ferroptosis)有关。铁死亡是自噬性细胞死亡过程。铁自噬通过调节细胞铁稳态和细胞ROS生成,成为诱导铁死亡的上游机制,与贫血、神经退行性疾病、癌症、缺血/再灌注损伤与疾病的发生发展密切相关。本文针对NCOA4介导的铁自噬通路在铁死亡中的功能特征,探讨NCOA4在这些疾病中的作用,可能为相关疾病的治疗提供启示。  相似文献   

18.
Ferroptosis is a form of regulated non-apoptotic cell death that has been implicated in several disease contexts. A better understanding of the ferroptotic death mechanism could lead to the development of new therapeutics for degenerative diseases, and a better understanding of how to induce ferroptosis in specific tumor contexts. We performed an unbiased genome-wide siRNA screen to find genetic suppressors of ferroptosis. We determined that loss of CARS, the cysteinyl-tRNA synthetase, suppresses ferroptosis induced by erastin, which inhibits the cystine–glutamate antiporter known as system xc. Knockdown of CARS inhibited erastin-induced death by preventing the induction of lipid reactive oxygen species, without altering iron homeostasis. Knockdown of CARS led to the accumulation of cystathionine, a metabolite on the transsulfuration pathway, and upregulated genes associated with serine biosynthesis and transsulfuration. In addition, inhibition of the transsulfuration pathway resensitized cells to erastin, even after CARS knockdown. These studies demonstrate a new mechanism of resistance to ferroptosis and may lead to strategies for inducing and suppressing ferroptosis in diverse contexts.Precise regulation of cell death is essential for tissue homeostasis. Dysregulation of cell death processes is implicated in a variety of pathological conditions, such as ischemia and neurodegenerative diseases, providing a rationale for exploring cell-death-modulating compounds as potential therapeutics.1 However, an incomplete understanding of cell death mechanisms in specific disease contexts has hindered efforts to develop therapeutics. Mechanistic analyses of cell death processes in disease contexts may uncover new strategies for drug discovery. Ferroptosis, a form of oxidative, non-apoptotic cell death, has recently been described and implicated in several pathological conditions, including Huntington''s disease (HD), periventricular leukomalacia (PVL) and kidney dysfunction.2, 3, 4 Ferroptotic cell death can be induced through perturbation of redox homeostasis maintained by glutathione, a key regulator of the intracellular redox state.Glutathione (GSH) is a tripeptide, the synthesis of which is dependent on the availability of the amino acid cysteine. A substantial fraction of extracellular cysteine exists as its oxidized disulfide form, cystine, because of the oxidative extracellular environment.5 Some cells primarily obtain cysteine by importing extracellular cystine through system xc, the cystine–glutamate antiporter. Cystine is then reduced to cysteine inside cells, fueling GSH synthesis. GSH maintains redox homeostasis by acting as a reductive substrate for reactive oxygen species (ROS)-detoxifying enzymes. As one example, glutathione peroxidase 4 (GPX4) uses GSH to reduce lipid hydroperoxides and organic hydroperoxides to alcohols, serving a critical role in lipid repair and detoxification. GPX4 was recently shown to be a central regulator of ferroptosis.6Ferroptosis can be induced by two classes of compounds, exemplified by erastin and (1 S, 3 R)-RSL3.6, 7, 8, 9 These two compounds target different parts of the ferroptotic pathway. Erastin inhibits system xc to deplete GSH, which effectively inactivates all cellular glutathione peroxidases, including GPX4. RSL3, on the other hand, acts downstream, inhibiting GPX4 directly. In both cases, the loss of GPX4 activity causes accumulation of lipid peroxides, and ultimately, cell death. Recently, the FDA-approved drugs sorafenib and sulfasalazine were also found to induce ferroptosis through inhibition of system xc activity,10, 11 although these lower-potency compounds may also activate other competing processes at similar or slightly higher concentrations. A specific inhibitor of ferroptosis, ferrostatin-1, and its analogs have been shown to suppress cell death in several degenerative disease models, including HD, PVL and kidney dysfunction, as well as in a model of glutamate toxicity, suggesting the involvement of ferroptosis in these conditions.4, 12 Collectively, these findings suggest that modulation of ferroptosis is of potential therapeutic relevance in several pathological conditions.Given the involvement of ferroptosis in these different contexts, we sought to identify specific features and regulators of ferroptosis. Ferroptosis is biochemically and morphologically distinct from necrosis and apoptosis.12 Genetic analysis of ferroptosis has been performed using a limited set of genes related to mitochondrial function.12 This previous analysis revealed that ferroptosis requires a distinct set of genes compared with apoptosis. However, this analysis cast a relatively narrow net; therefore, we sought to extend our understanding of the genetic regulation of ferroptosis further to identify essential genes and pathways using a genome-wide siRNA screen. Such genes may illuminate novel targets whose inhibition could be therapeutic in disease conditions involving aberrant activation of ferroptosis, or suggest strategies for inducing ferroptosis in specific tumor contexts.  相似文献   

19.
Coronary artery disease (CAD) is one of the leading causes of death in the developed countries. Myocardial infarction (MI) is an acute episode of CAD that results in myocardial injury and subsequent heart failure (HF). In the acute phase of MI several risk factors for future cardiovascular events have been found. The molecular mechanisms of these disorders are still unknown, but altered gene expression may play an important role in the development and progression of cardiovascular diseases. High-throughput techniques should greatly facilitate the elucidation of the mechanisms and provide novel insights into the pathophysiology of cardiovascular diseases. In this review we focus on the perspectives of gene-expression profiling conducted on cardiac tissues and blood for the determination of novel diagnostic and prognostic markers and therapeutic targets.  相似文献   

20.
Ferroptosis is a novel type of cell death characterized by iron-dependent lipid peroxidation that involves a variety of biological processes, such as iron metabolism, lipid metabolism, and oxidative stress. A growing body of research suggests that ferroptosis is associated with cancer and neurodegenerative diseases, such as glioblastoma, Alzheimer''s disease, Parkinson''s disease, and stroke. Building on these findings, we can selectively induce ferroptosis for the treatment of certain cancers, or we can treat neurodegenerative diseases by inhibiting ferroptosis. This review summarizes the relevant advances in ferroptosis, the regulatory mechanisms of ferroptosis, the participation of ferroptosis in brain tumors and neurodegenerative diseases, and the corresponding drug therapies to provide new potential targets for its treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号