首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5–25 μg/cm2) or H2O2 (100–250 μm)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/β 317–323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1−/− mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity.  相似文献   

3.
A gene coding for a protein that shows homologies to prokaryotic ribosomal protein S2 is present in the mitochondrial (mt) genome of wheat (Triticum aestivum). The wheat gene is transcribed as a single mRNA which is edited by C-to-U conversions at seven positions, all resulting in alteration of the encoded amino acid. Homologous gene sequences are also present in the mt genomes of rice and maize, but we failed to identify the corresponding sequences in the mtDNA of all dicotyledonous species tested; in these species the mitochondrial RPS2 is probably encoded in the nucleus. The protein sequence deduced from the wheat rps2 gene sequence has a long C-terminal extension when compared to other prokaryotic RPS2 sequences. This extension presents no similarity with any known sequence and is not conserved in the maize or rice mitochondrial rps2 gene. Most probably, after translation, this peptide extension is processed by a specific peptidase to give rise to the mature wheat mitochondrial RPS2.  相似文献   

4.
5.
Missense mutations in the human C10orf2 gene, encoding the mitochondrial DNA (mtDNA) helicase, co-segregate with mitochondrial diseases such as adult-onset progressive external ophthalmoplegia, hepatocerebral syndrome with mtDNA depletion syndrome, and infantile-onset spinocerebellar ataxia. To understand the biochemical consequences of C10orf2 mutations, we overproduced wild type and 20 mutant forms of human mtDNA helicase in Escherichia coli and developed novel schemes to purify the recombinant enzymes to near homogeneity. A combination of molecular crowding, non-ionic detergents, Mg2+ ions, and elevated ionic strength was required to combat insolubility and intrinsic instability of certain mutant variants. A systematic biochemical assessment of the enzymes included analysis of DNA binding affinity, DNA helicase activity, the kinetics of nucleotide hydrolysis, and estimates of thermal stability. In contrast to other studies, we found that all 20 mutant variants retain helicase function under optimized in vitro conditions despite partial reductions in DNA binding affinity, nucleotide hydrolysis, or thermal stability for some mutants. Such partial defects are consistent with the delayed presentation of mitochondrial diseases associated with mutation of C10orf2.  相似文献   

6.
Mitochondrial topoisomerase I (Top1mt) is a type IB topoisomerase present in vertebrates and exclusively targeted to mitochondria. Top1mt relaxes mitochondrial DNA (mtDNA) supercoiling by introducing transient cleavage complexes wherein the broken DNA strand swivels around the intact strand. Top1mt cleavage complexes (Top1mtcc) can be stabilized in vitro by camptothecin (CPT). However, CPT does not trap Top1mtcc efficiently in cells and is highly cytotoxic due to nuclear Top1 targeting. To map Top1mtcc on mtDNA in vivo and to overcome the limitations of CPT, we designed two substitutions (T546A and N550H) in Top1mt to stabilize Top1mtcc. We refer to the double-mutant enzyme as Top1mt*. Using retroviral transduction and ChIP-on-chip assays with Top1mt* in Top1mt knock-out murine embryonic fibroblasts, we demonstrate that Top1mt* forms high levels of cleavage complexes preferentially in the noncoding regulatory region of mtDNA, accumulating especially at the heavy strand replication origin OH, in the ribosomal genes (12S and 16S) and at the light strand replication origin OL. Expression of Top1mt* also caused rapid mtDNA depletion without affecting mitochondria mass, suggesting the existence of specific mitochondrial pathways for the removal of damaged mtDNA.  相似文献   

7.
8.
9.
A gene (rps2) coding for ribosomal protein S2 (RPS2) is present in the mitochondrial (mt) genome of several monocot plants, but absent from the mtDNA of dicots. Confirming that in dicot plants the corresponding gene has been transferred to the nucleus, a corresponding Arabidopsis thaliana nuclear gene was identified that codes for mitochondrial RPS2. As several yeast and mammalian genes coding for mt ribosomal proteins, the Arabidopsis RPS2 apparently has no N-terminal targeting sequence. In the maize mt genome, two rps2 genes were identified and both are transcribed, although at different levels. As in wheat and rice, the maize genes code for proteins with long C-terminal extensions, as compared to their bacterial counterparts. These extensions are not conserved in sequence. Using specific antibodies against one of the maize proteins we found that a large protein precursor is indeed synthesized, but it is apparently processed to give the mature RPS2 protein which is associated with the mitochondrial ribosome.  相似文献   

10.
11.
Yeast SUV3 is a nuclear encoded mitochondrial RNA helicase that complexes with an exoribonuclease, DSS1, to function as an RNA degradosome. Inactivation of SUV3 leads to mitochondrial dysfunctions, such as respiratory deficiency; accumulation of aberrant RNA species, including excised group I introns; and loss of mitochondrial DNA (mtDNA). Although intron toxicity has long been speculated to be the major reason for the observed phenotypes, direct evidence to support or refute this theory is lacking. Moreover, it remains unknown whether SUV3 plays a direct role in mtDNA maintenance independently of its degradosome activity. In this paper, we address these questions by employing an inducible knockdown system in Saccharomyces cerevisiae with either normal or intronless mtDNA background. Expressing mutants defective in ATPase (K245A) or RNA binding activities (V272L or ΔCC, which carries an 8-amino acid deletion at the C-terminal conserved region) resulted in not only respiratory deficiencies but also loss of mtDNA under normal mtDNA background. Surprisingly, V272L, but not other mutants, can rescue the said deficiencies under intronless background. These results provide genetic evidence supporting the notion that the functional requirements of SUV3 for degradosome activity and maintenance of mtDNA stability are separable. Furthermore, V272L mutants and wild-type SUV3 associated with an active mtDNA replication origin and facilitated mtDNA replication, whereas K245A and ΔCC failed to support mtDNA replication. These results indicate a direct role of SUV3 in maintaining mitochondrial genome stability that is independent of intron turnover but requires the intact ATPase activity and the CC conserved region.  相似文献   

12.
The correct organization of mitochondrial DNA (mtDNA) in nucleoids and the contacts of mitochondria with the ER play an important role in maintaining the mitochondrial genome distribution within the cell. Mitochondria-associated ER membranes (MAMs) consist of interacting proteins and lipids located in the outer mitochondrial membrane and ER membrane, forming a platform for the mitochondrial inner membrane-associated genome replication factory as well as connecting the nucleoids with the mitochondrial division machinery. We show here that knockdown of a core component of mitochondrial nucleoids, TFAM, causes changes in the mitochondrial nucleoid populations, which subsequently impact ER-mitochondria membrane contacts. Knockdown of TFAM causes a significant decrease in the copy number of mtDNA as well as aggregation of mtDNA nucleoids. At the same time, it causes significant upregulation of the replicative TWNK helicase in the membrane-associated nucleoid fraction. This is accompanied by a transient elevation of MAM proteins, indicating a rearrangement of the linkage between ER and mitochondria triggered by changes in mitochondrial nucleoids. Reciprocal knockdown of the mitochondrial replicative helicase TWNK causes a decrease in mtDNA copy number and modifies mtDNA membrane association, however, it does not cause nucleoid aggregation and considerable alterations of MAM proteins in the membrane-associated fraction. Our explanation is that the aggregation of mitochondrial nucleoids resulting from TFAM knockdown triggers a compensatory mechanism involving the reorganization of both mitochondrial nucleoids and MAM. These results could provide an important insight into pathological conditions associated with impaired nucleoid organization or defects of mtDNA distribution.  相似文献   

13.
A gene coding for a protein that shows homologies to prokaryotic ribosomal protein S2 is present in the mitochondrial (mt) genome of wheat (Triticum aestivum). The wheat gene is transcribed as a single mRNA which is edited by C-to-U conversions at seven positions, all resulting in alteration of the encoded amino acid. Homologous gene sequences are also present in the mt genomes of rice and maize, but we failed to identify the corresponding sequences in the mtDNA of all dicotyledonous species tested; in these species the mitochondrial RPS2 is probably encoded in the nucleus. The protein sequence deduced from the wheat rps2 gene sequence has a long C-terminal extension when compared to other prokaryotic RPS2 sequences. This extension presents no similarity with any known sequence and is not conserved in the maize or rice mitochondrial rps2 gene. Most probably, after translation, this peptide extension is processed by a specific peptidase to give rise to the mature wheat mitochondrial RPS2. Received: 20 November 1997 / Accepted: 29 January 1998  相似文献   

14.
15.
16.
Mitochondrial DNA (mtDNA) is different in many ways from nuclear DNA. A key difference is that certain types of DNA damage are not repaired in the mitochondrial genome. What, then, is the fate of such damage? What are the effects? Both questions are important from a health perspective because irreparable mtDNA damage is caused by many common environmental stressors including ultraviolet C radiation (UVC). We found that UVC-induced mtDNA damage is removed slowly in the nematode Caenorhabditis elegans via a mechanism dependent on mitochondrial fusion, fission, and autophagy. However, knockdown or knockout of genes involved in these processes—many of which have homologs involved in human mitochondrial diseases—had very different effects on the organismal response to UVC. Reduced mitochondrial fission and autophagy caused no or small effects, while reduced mitochondrial fusion had dramatic effects.  相似文献   

17.
In human cells APE1 is the major AP endonuclease and it has been reported to have no functional mitochondrial targeting sequence (MTS). We found that APE2 protein possesses a putative MTS. When its N-terminal 15 amino acid residues were fused to the N-terminus of green fluorescent protein and transiently expressed in HeLa cells the fusion protein was localized in the mitochondria. By electron microscopic immunocytochemistry we detected authentic APE2 protein in mitochondria from HeLa cells. Western blotting of the subcellular fraction of HeLa cells revealed most of the APE2 protein to be localized in the nuclei. We found a putative proliferating cell nuclear antigen (PCNA)-binding motif in the C-terminal region of APE2 and showed this motif to be functional by immunoprecipitation and in vitro pull-down binding assays. Laser scanning immunofluorescence microscopy of HeLa cells demonstrated both APE2 and PCNA to form foci in the nucleus and also to be co-localized in some of the foci. The incubation of HeLa cells in HAT medium containing deoxyuridine significantly increased the number of foci in which both molecules were co-localized. Our results suggest that APE2 participates in both nuclear and mitochondrial BER and also that nuclear APE2 functions in the PCNA-dependent BER pathway.  相似文献   

18.
Tumor cell mitochondria are key biosynthetic hubs that provide macromolecules for cancer progression and angiogenesis. Soluble decorin protein core, hereafter referred to as decorin, potently attenuated mitochondrial respiratory complexes and mitochondrial DNA (mtDNA) in MDA-MB-231 breast carcinoma cells. We found a rapid and dynamic interplay between peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and the decorin-induced tumor suppressor gene, mitostatin. This interaction stabilized mitostatin mRNA with concurrent accumulation of mitostatin protein. In contrast, siRNA-mediated abrogation of PGC-1α-blocked decorin-evoked stabilization of mitostatin. Mechanistically, PGC-1α bound MITOSTATIN mRNA to achieve rapid stabilization. These processes were orchestrated by the decorin/Met axis, as blocking the Met-tyrosine kinase or knockdown of Met abrogated these responses. Furthermore, depletion of mitostatin blocked decorin- or rapamycin-evoked mitophagy, increased vascular endothelial growth factor A (VEGFA) production, and compromised decorin-evoked VEGFA suppression. Collectively, our findings underscore the complexity of PGC-1α-mediated mitochondrial homeostasis and establish mitostatin as a key regulator of tumor cell mitophagy and angiostasis.  相似文献   

19.
Summary The inheritance of both the mitochondrial DNA (mtDNA) and the nuclear-encoded extrachromosomal ribosomal DNA (rDNA) has been studied in the myxomycete, Didymium iridis, by DNA-DNA hybridization of labeled probes to total DNA at various stage of the life cycle. Both the mtDNA and rDNA populations rapidly become homogeneous in individuals, but there is a qualitative difference in the patterns of inheritance of these two molecules. One parental rDNA type was preferentially inherited in all crosses; selective replication of this molecule is tentatively proposed as the mechanism of inheritance. In contrast, either parental mtDNA type could be inherited. Since the inherited population of parental mtDNA molecules are not partitioned into cells in this coenocytic organism, no known mechanism of inheritance can explain the rapid and apparently random loss of one parental mtDNA type in individuals.  相似文献   

20.
Mitochondrial prohibitin (PHB) proteins have diverse functions, such as the regulation of apoptosis and the maintenance of mitochondrial morphology. In this study, we clarified a novel mitochondrial function of PHB1 that regulates the organization and maintenance of mitochondrial DNA (mtDNA). In PHB1-knockdown cells, we found that mtDNA is not stained by fluorescent dyes, such as ethidium bromide and PicoGreen, although the mitochondrial membrane potential still maintains. We also demonstrated that mtDNA, which is predominantly found in the NP-40-insoluble fraction when isolated from normal mitochondria, is partially released into the soluble fraction when isolated from PHB1-knockdown cells, indicating that the organization of the mitochondrial nucleoids has been altered. Furthermore, we found that PHB1 regulates copy number of mtDNA by stabilizing TFAM protein, a known protein component of the mitochondrial nucleoids. However, TFAM does not affect the organization of mtDNA as observed in PHB1-knockdown cells. Taken together, these results demonstrate that PHB1 maintains the organization and copy number of the mtDNA through both TFAM-independent and -dependent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号