首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although non-small cell lung cancer (NSCLC) tumors with activating mutations in the epidermal growth factor receptor (EGFR) are highly responsive to EGFR tyrosine kinase inhibitors (TKIs) including gefitinib and erlotinib, development of acquired resistance is almost inevitable. Statins show antitumor activity, but it is unknown whether they can reverse EGFR-TKIs resistance in NSCLC with the T790M mutation of EGFR. This study investigated overcoming resistance to EGFR-TKI using simvastatin. We demonstrated that addition of simvastatin to gefitinib enhanced caspase-dependent apoptosis in T790M mutant NSCLC cells. Simvastatin also strongly inhibited AKT activation, leading to suppression of β-catenin activity and the expression of its targets, survivin and cyclin D1. Both insulin treatment and AKT overexpression markedly increased p-β-catenin and survivin levels, even in the presence of gefitinib and simvastatin. However, inhibition of AKT by siRNA or LY294002 treatment decreased p-β-catenin and survivin levels. To determine the role of survivin in simvastatin-induced apoptosis of gefitinib-resistant NSCLC, we showed that the proportion of apoptotic cells following treatment with survivin siRNA and the gefitinib–simvastatin combination was greater than the theoretical additive effects, whereas survivin up-regulation could confer protection against gefitinib and simvastatin-induced apoptosis. Similar results were obtained in erlotinib and simvastatin-treated HCC827/ER cells. These findings suggest that survivin is a key molecule that renders T790M mutant NSCLC cells resistant to apoptosis induced by EGFR-TKIs and simvastatin. Overall, these data indicate that simvastatin may overcome EGFR-TKI resistance in T790M mutant NSCLCs via an AKT/β-catenin signaling-dependent down-regulation of survivin and apoptosis induction.  相似文献   

2.
The epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) such as gefitinib and erlotinib have been widely used in treating patients with advanced non-small cell lung cancer (NSCLC). However, acquired resistance to EGFR TKI almost occurs in every patient eventually. To identify its potential mechanism, we established a human NSCLC cell line PC9/AB2 which was 576-fold decrease in gefitinib sensitivity compared with its parental PC9 cell lines. No EGFR-T790M mutation or abnormal expression of c-Met protein was found in PC9/AB2 cells. Over-expression of integrin β1 was found, accompanied with increase of the cells' adhesion and migration. To further confirm the role of integrin β1 in gefitinib acquired resistance, we transferred its siRNA-expressing plasmid and its whole cDNA expressing plasmid into PC9/AB2 and into PC9 cells, respectively. The sensitivity of NSCLC cells to gefitinib was negatively correlated with integrin β1 expression levels. All these data suggest that up-regulation of integrin β1 might be an important factor for gefitinib resistance in NSCLC cell line PC9/AB2.  相似文献   

3.
Resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as erlotinib and gefitinib, is a major clinical problem in the treatment of patients with non-small cell lung cancer (NSCLC). YM155 is a survivin small molecule inhibitor and has been demonstrated to induce cancer cell apoptosis and autophagy. EGFR-TKIs have been known to induce cancer cell autophagy. In this study, we showed that YM155 markedly enhanced the sensitivity of erlotinib to EGFR-TKI resistant NSCLC cell lines H1650 (EGFR exon 19 deletion and PTEN loss) and A549 (EGFR wild type and KRAS mutation) through inducing autophagy-dependent apoptosis and autophagic cell death. The effects of YM155 combined with erlotinib on apoptosis and autophagy inductions were more obvious than those of YM155 in combination with survivin knockdown by siRNA transfection, suggesting that YM155 induced autophagy and apoptosis in the NSCLC cells partially depend on survivin downregulation. Meanwhile, we found that the AKT/mTOR pathway is involved in modulation of survivin downregulation and autophagy induction caused by YM155. In addition, YM155 can induce DNA damage in H1650 and A549 cell lines. Moreover, combining erlotinib further augmented DNA damage by YM155, which were retarded by autophagy inhibitor 3MA, or knockdown of autophagy-related protein Beclin 1, revealing that YM155 induced DNA damage is autophagy-dependent. Similar results were also observed in vivo xenograft experiments. Therefore, combination of YM155 and erlotinib offers a promising therapeutic strategy in NSCLC with EGFR-TKI resistant phenotype.  相似文献   

4.
Small molecule epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown promising activity in patients with non-small cell lung cancer (NSCLC). Gefitinib has been the first of these drugs to be licensed for third-line treatment of advanced NSCLC patients. More recently, erlotinib has been shown to be more effective than placebo in increasing overall survival (OAS) and has been approved for NSCLC patients after failure of chemotherapy. However, a large body of clinical and experimental evidence suggests that the benefit from these drugs is limited to a subgroup of patients. The availability of clinical or molecular criteria for predicting sensitivity to EGFR-TKIs is the most relevant issue for their correct use and for planning future research. Determination of EGFR expression is not sufficient to predict sensitivity to EGFR-TKIs. However, several clinical features (female gender, adenocarcinoma/bronchioloalveolar histotype, never-smoking status, Oriental Asian origin) are associated with major clinical responses. The identification of somatic mutations in the tyrosine kinase domain of the EGFR gene represents the most important molecular marker of sensitivity to EGFR-TKIs. These "activating" mutations can be found in a high proportion of gefitinib- or erlotinib-responding patients. However, clinical effectiveness might not be limited to patients carrying EGFR mutations, in which the objective response is probably the detectable effect of apoptosis induction in cancer cells. In fact, clinical efficacy with gefitinib or erlotinib is also observed in another subgroup of patients, in which a tumor growth delay, determined by a block in cancer cell proliferation, could induce a prolonged and clinically relevant disease stabilization.  相似文献   

5.
Epidermal growth factor receptor (EGFR) and c-MET receptors are expressed on many non-small cell lung cancer (NSCLC) cells. Current single agent therapeutic targeting of a mutant EGFR has a high efficacy in the clinic, but is not curative. Here, we investigated the combination of targeting EGFR and c-MET pathways in NSCLC cells resistant to receptor tyrosine kinase inhibitors (TKIs), using RNA interference and inhibition by TKIs. Different NSCLC cell lines with various genomic characteristics (H358, H1650 and H1975) were transfected with EGFR-specific-siRNA, T790M-specific-siRNA, c-MET siRNA or the combination. Subsequently EGFR TKIs (gefitinib, erlotinib or afatinib) or monoclonal antibody cetuximab were combined respectively with the c-MET-specific TKI su11274 in NSCLC cell lines. The cell proliferation, viability, caspase−3/7 activity and apoptotic morphology were monitored by spectrophotometry, fluorimetry and fluorescence microscopy. The combined effect of EGFR TKIs, or cetuximab and su11274, was evaluated using a combination index. The results showed that the cell lines that were relatively resistant to EGFR TKIs, especially the H1975 cell line containing the resistance T790M mutation, were found to be more sensitive to EGFR-specific-siRNA. The combination of EGFR siRNA plus c-MET siRNA enhanced cell growth inhibition, apoptosis induction and inhibition of downstream signaling in EGFR TKI resistant H358, H1650 and H1975 cells, despite the absence of activity of the c-MET siRNA alone. EGFR TKIs or cetuximab plus su11274 were also consistently superior to either agent alone. The strongest biological effect was observed when afatinib, an irreversible pan-HER blocker was combined with su11274, which achieved a synergistic effect in the T790M mutant H1975 cells. In a conclusion, our findings offer preclinical proof of principle for combined inhibition as a promising treatment strategy for NSCLC, especially for patients in whom current EGFR-targeted treatments fail due to the presence of the T790M-EGFR-mutation or high c-MET expression.  相似文献   

6.
Han W  Pan H  Chen Y  Sun J  Wang Y  Li J  Ge W  Feng L  Lin X  Wang X  Wang X  Jin H 《PloS one》2011,6(6):e18691
Epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib have been widely used in patients with non-small-cell lung cancer. Unfortunately, the efficacy of EGFR-TKIs is limited because of natural and acquired resistance. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether autophagy can be activated by gefitinib or erlotinib and thereby impair the sensitivity of targeted therapy to lung cancer cells remains unknown. Here, we first report that gefitinib or erlotinib can induce a high level of autophagy, which was accompanied by the inhibition of the PI3K/Akt/mTOR signaling pathway. Moreover, cytotoxicity induced by gefitinib or erlotinib was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting ATG5 and ATG7, the most important components for the formation of autophagosome. Interestingly, EGFR-TKIs can still induce cell autophagy even after EGFR expression was reduced by EGFR specific siRNAs. In conclusion, we found that autophagy can be activated by EGFR-TKIs in lung cancer cells and inhibition of autophagy augmented the growth inhibitory effect of EGFR-TKIs. Autophagy inhibition thus represents a promising approach to improve the efficacy of EGFR-TKIs in the treatment of patients with advanced non-small-cell lung cancer.  相似文献   

7.
Blockade of epidermal growth factor receptor (EGFR) activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC). As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs), there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK) activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975) were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271) both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be particularly sensitive to this combination treatment. As such, further evaluation of this combination therapy is warranted and could prove to be an effective therapeutic approach for patients with inherent EGFR TKI-resistant NSCLC.  相似文献   

8.
Patients with non‐small‐cell lung cancer (NSCLC) appear to gain particular benefit from treatment with epidermal growth factor receptor (EGFR) tyrosine‐kinase inhibitors (TKI) if their disease tests positive for EGFR activating mutations. Recently, several large, controlled, phase III studies have been published in NSCLC patients with EGFR mutation‐positive tumours. Given the increased patient dataset now available, a comprehensive literature search for EGFR TKIs or chemotherapy in EGFR mutation‐positive NSCLC was undertaken to update the results of a previously published pooled analysis. Pooling eligible progression‐free survival (PFS) data from 27 erlotinib studies (n = 731), 54 gefitinib studies (n = 1802) and 20 chemotherapy studies (n = 984) provided median PFS values for each treatment. The pooled median PFS was: 12.4 months (95% accuracy intervals [AI] 11.6–13.4) for erlotinib‐treated patients; 9.4 months (95% AI 9.0–9.8) for gefitinib‐treated patients; and 5.6 months (95% AI 5.3–6.0) for chemotherapy. Both erlotinib and gefitinib resulted in significantly longer PFS than chemotherapy (permutation testing; P = 0.000 and P = 0.000, respectively). Data on more recent TKIs (afatinib, dacomitinib and icotinib) were insufficient at this time‐point to carry out a pooled PFS analysis on these compounds. The results of this updated pooled analysis suggest a substantial clear PFS benefit of treating patients with EGFR mutation‐positive NSCLC with erlotinib or gefitinib compared with chemotherapy.  相似文献   

9.
10.

Background

Epidermal growth factor receptor- tyrosine kinase inhibitors (EGFR-TKIs) benefit Non-small cell lung cancer (NSCLC) patients, and an EGFR-TKIi erlotinib, is approved for patients with recurrent NSCLC. However, resistance to erlotinib is a major clinical problem. Earlier we have demonstrated the role of Hedgehog (Hh) signaling in Epithelial-to-Mesenchymal transition (EMT) of NSCLC cells, leading to increased proliferation and invasion. Here, we investigated the role of Hh signaling in erlotinib resistance of TGF-β1-induced NSCLC cells that are reminiscent of EMT cells.

Methods

Hh signaling was inhibited by specific siRNA and by GDC-0449, a small molecule antagonist of G protein coupled receptor smoothened in the Hh pathway. Not all NSCLC patients are likely to benefit from EGFR-TKIs and, therefore, cisplatin was used to further demonstrate a role of inhibition of Hh signaling in sensitization of resistant EMT cells. Specific pre- and anti-miRNA preparations were used to study the mechanistic involvement of miRNAs in drug resistance mechanism.

Results

siRNA-mediated inhibition as well as pharmacological inhibition of Hh signaling abrogated resistance of NSCLC cells to erlotinib and cisplatin. It also resulted in re-sensitization of TGF-β1-induced A549 (A549M) cells as well the mesenchymal phenotypic H1299 cells to erlotinib and cisplatin treatment with concomitant up-regulation of cancer stem cell (CSC) markers (Sox2, Nanog and EpCAM) and down-regulation of miR-200 and let-7 family miRNAs. Ectopic up-regulation of miRNAs, especially miR-200b and let-7c, significantly diminished the erlotinib resistance of A549M cells. Inhibition of Hh signaling by GDC-0449 in EMT cells resulted in the attenuation of CSC markers and up-regulation of miR-200b and let-7c, leading to sensitization of EMT cells to drug treatment, thus, confirming a connection between Hh signaling, miRNAs and drug resistance.

Conclusions

We demonstrate that Hh pathway, through EMT-induction, leads to reduced sensitivity to EGFR-TKIs in NSCLCs. Therefore, targeting Hh pathway may lead to the reversal of EMT phenotype and improve the therapeutic efficacy of EGFR-TKIs in NSCLC patients.
  相似文献   

11.
The immune checkpoint ligand programmed death-ligand 1 (PD-L1) and the transmembrane mucin (MUC) 3A are upregulated in non-small cell lung cancer (NSCLC), contributing to the aggressive pathogenesis and poor prognosis. Here, we report that knocking down the oncogenic MUC3A suppresses the PD-L1 expression in NSCLC cells. MUC3A is a potent regulator of epidermal growth factor receptor (EGFR) stability, and MUC3A deficiency downregulates the activation of the PI3K/Akt and MAPK pathways, which subsequently reduces the expression of PD-L1. Furthermore, knockdown of MUC3A and tyrosine kinase inhibitors (TKIs) in EGFR-mutant NSCLC cells play a synergistic effect on inhibited proliferation and promoted apoptosis in vitro. In the BALB/c nude mice xenograft model, MUC3A deficiency enhances EGFR-mutated NSCLC sensitivity to TKIs. Our study shows that transmembrane mucin MUC3A induces PD-L1, thereby promoting immune escape in NSCLC, while downregulation of MUC3A enhances TKIs effects in EGFR-mutant NSCLC. These findings offer insights into the design of novel combination treatment for NSCLC.  相似文献   

12.
Costa DB  Halmos B  Kumar A  Schumer ST  Huberman MS  Boggon TJ  Tenen DG  Kobayashi S 《PLoS medicine》2007,4(10):1669-79; discussion 1680

Background

Epidermal growth factor receptor (EGFR) mutations are present in the majority of patients with non-small cell lung cancer (NSCLC) responsive to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib. These EGFR-dependent tumors eventually become TKI resistant, and the common secondary T790M mutation accounts for half the tumors with acquired resistance to gefitinib. However, the key proapoptotic proteins involved in TKI-induced cell death and other secondary mutations involved in resistance remain unclear. The objective of this study was to identify the mechanism of EGFR TKI-induced apoptosis and secondary resistant mutations that affect this process.

Methods and Findings

To study TKI-induced cell death and mechanisms of resistance, we used lung cancer cell lines (with or without EGFR mutations), Ba/F3 cells stably transfected with EGFR mutation constructs, and tumor samples from a gefitinib-resistant patient. Here we show that up-regulation of the BH3-only polypeptide BIM (also known as BCL2-like 11) correlated with gefitinib-induced apoptosis in gefitinib-sensitive EGFR-mutant lung cancer cells. The T790M mutation blocked gefitinib-induced up-regulation of BIM and apoptosis. This blockade was overcome by the irreversible TKI CL-387,785. Knockdown of BIM by small interfering RNA was able to attenuate apoptosis induced by EGFR TKIs. Furthermore, from a gefitinib-resistant patient carrying the activating L858R mutation, we identified a novel secondary resistant mutation, L747S in cis to the activating mutation, which attenuated the up-regulation of BIM and reduced apoptosis.

Conclusions

Our results provide evidence that BIM is involved in TKI-induced apoptosis in sensitive EGFR-mutant cells and that both attenuation of the up-regulation of BIM and resistance to gefitinib-induced apoptosis are seen in models that contain the common EGFR T790M and the novel L747S secondary resistance mutations. These findings also suggest that induction of BIM may have a role in the treatment of TKI-resistant tumors.  相似文献   

13.

Purpose

Recent clinical trials showed that the sequential combination of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and chemotherapy could prolong the PFS and/or OS of advanced non-small cell lung cancer (NSCLC) patients with EGFR mutation. The aim of present study was to assess the optimal combination sequence and to explore its possible mechanism.

Methods

PC-9 cells and A549 cells, the lung adenocarcinoma cells with mutant and wide-type EGFR respectively, were treated with docetaxel/gefitinib alone or in different combination schedules. The EGFR and K-ras gene status was determined by qPCR-HRM technique. Cell proliferation was detected by MTT assay. The expression and phosphorylation of EGFR, ERK, Akt and IGF-1R were detected by western blot. Cell cycle distribution was observed by flow cytometry.

Results

Only sequential administration of docetaxel followed by gefitinib (D→G) induced significant synergistic effect in both cell lines (Combination Index<0.9). The reverse sequence (G→D) resulted in an antagonistic interaction in both cell lines (CI>1.1), whereas the concurrent administration (D+G) showed additive (0.9<CI<1.1)-synergistic effect in PC-9 cells and antagonistic-additive effect in A549 cells. Mechanism studies showed that docetaxel-induced phosphorylation of EGFR and ERK was repressed by subsequently used gefitinib, but not by concurrent exposure of gefitinib. The gefitinib-repressed phosphorylation of EGFR and ERK was reversed neither by concurrent nor by subsequent administration of docetaxel. D+G reinforced their inhibition on the phosphorylation of IGF-1R in PC-9 cells.

Conclusions

The cytotoxic drugs followed by EGFR-TKIs may be the optimal combination for antiproliferative effects in EGFR-mutant NSCLC cells, and the phosphorylation of EGFR and ERK might contribute to this effect.  相似文献   

14.
15.
Recent reports suggested that essential directions for new lung cancer, breast carcinoma therapies, as well as the roomier realm of targeted cancer therapies were provided through targeting the epidermal growth factor receptor (EGFR). Patients who carrying non‐small cell lung carcinoma (NSCLC) with activating mutations in EGFR initially respond well to the EGFR inhibitors erlotinib and gefitinib, which were located the active site of the EGFR kinase and designed to act as competitive inhibitors of combining with the ATP. However, patients who were treated with the erlotinib and gefitinib will relapse because of the emergence of drug‐resistant mutations, with T790M mutations accounting for approximately 60% of all resistance. In order to overcome drug resistance, Pharmaceutical chemistry experts recently devoted great endeavors to the development of second‐generation irreversible selective inhibitors which covalently modify Cys797 or Cys773 at the ATP binding cleft. Nevertheless, these inhibitors have not reached ideal effect of experts in patients with T790M positive mutation and apparently because of the dose‐limiting toxicities associated with inhibition of wild type EGFR. A novel class of ‘third generation’ EGFR TKIs have been developed that is sensitising and T790M mutant‐specific whilst sparing WT EGFR, representing a significant breakthrough in the treatment in NSCLC patients with acquired resistance harboring these genotypes. Herein, we provides an overview of the second and third generation inhibitors currently approved, in clinical trial and also encompasses novel structures of discovery. This review mainly focuses on drug resistance, their mechanisms of action, development of structure–activity relationships and binding modes.  相似文献   

16.
High-grade gliomas (HGG), are the most common aggressive brain tumours in adults. Inhibitors targeting growth factor signalling pathways in glioma have shown a low clinical response rate. To accurately evaluate response to targeted therapies further in vitro studies are necessary. Growth factor pathway expression using epidermal growth factor receptor (EGFR), mutant EGFR (EGFRvIII), platelet derived growth factor receptor (PDGFR), C-Kit and C-Abl together with phosphatase and tensin homolog (PTEN) expression and downstream activation of AKT and phosphorylated ribosomal protein S6 (P70S6K) was analysed in 26 primary glioma cultures treated with the tyrosine kinase inhibitors (TKIs) erlotinib, gefitinib and imatinib. Response to TKIs was assessed using 50% inhibitory concentrations (IC(50)). Response for each culture was compared with the EGFR/PDGFR immunocytochemical pathway profile using hierarchical cluster analysis (HCA) and principal component analysis (PCA). Erlotinib response was not strongly associated with high expression of the growth factor pathway components. PTEN expression did not correlate with response to any of the three TKIs. Increased EGFR expression was associated with gefitinib response; increased PDGFR-α expression was associated with imatinib response. The results of this in vitro study suggest gefitinib and imatinib may have therapeutic potential in HGG tumours with a corresponding growth factor receptor expression profile.  相似文献   

17.
表皮生长因子受体(epithelial growth factor receptor,EGFR)信号转导通路在非小细胞肺癌(Non-Small Cell Lung Cancer,NSCLC)中发挥重要作用,尤其胞内酪氨酸激酶结构域的突变状态决定了目前NSCLC的靶向治疗。针对EGFR突变的分子靶向药物表皮生长因子受体酪氨酸激酶抑制剂(epithelial growth factor receptor tyrosine kinase inhibitors,EGFR-TKIs)已开发并应用于NSCLC的治疗。在治疗过程中,EGFR的突变状态随时间发生动态变化,因此精准掌握EGFR的突变状态是靶向治疗方案制定、优化的关键。PET分子成像可在细胞和分子水平,对在体生物活动的发生、发展过程进行实时成像,使实时、在体揭示EGFR的突变状态成为可能。因此,多种以TKIs为前体标记放射性核素作为靶向肿瘤突变EGFR胞内段分子成像探针的研究逐渐增多。本文就EGFR-TKIs在NSCLC治疗及相关PET分子成像方面的研究进展进行综述。  相似文献   

18.

Background

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), gefitinib and erlotinib have been tested as maintenance therapy in patients with advanced non-small-cell lung cancer (NSCLC). The studies are quite heterogenous regarding study size and populations, and a synopsis of these data could give some more insight in the role of maintenance therapy with TKI.

Methods

In September 2012 we performed a search in the pubmed, EMBASE and Cochrane library databases for randomized phase III trials exploring the role of gefitinib or erlotinib in advanced non-small cell lung cancer. Through a rigorous selection process with specific criteria, five trials (n = 2436 patients) were included for analysis. Standard statistical methods for meta-analysis were applied.

Results

TKIs (gefitinib and erlotinib) significantly increased progression-free survival (PFS) [hazard ratio (HR) 0.63, 95% confidence interval (CI) 0.50–0.76, I2 = 78.1%] and overall survival (HR 0.84, 95% CI 0.76–0.93, I2 = 0.0%) compared with placebo or observation. The PFS benefit was consistent in all subgroups including stage, sex, ethnicity, performance status, smoking status, histology, EGFR mutation status, and previous response to chemotherapy. Patients with clinical features such as female, never smoker, adenocarcinoma, Asian ethnicity and EGFR mutation positive had more pronounced PFS benefit. Overall survival benefit was observed in patients with clinical features such as female, non-smoker, smoker, adenocarcinoma, and previous stable to induction chemotherapy. Severe adverse events were not frequent. Main limitations of this analysis are that it is not based on individual patient data, and not all studies provided detailed subgroups analysis.

Conclusions

The results show that maintenance therapy with erlotinib or gefitinib produces a significant PFS and OS benefit for unselected patients with advanced NSCLC compared with placebo or observation. Given the less toxicity of TKIs than chemotherapy and simple oral administration, this treatment strategy seems to be of important clinical value.  相似文献   

19.
20.
Despite initial dramatic efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR‐TKIs) in EGFR‐mutant lung cancer patients, subsequent emergence of acquired resistance is almost inevitable. Resveratrol and its derivatives have been found to exert some effects on EGFR‐TKI resistance in non‐small cell lung cancer (NSCLC), but the underlying mechanisms remain unclear. We screened several NSCLC cell lines with gefitinib resistance by MTT assay and analysed the miR‐345/miR‐498 expression levels. NSCLC cells were pre‐treated with a resveratrol derivative, trans‐3,5,4‐trimethoxystilbene (TMS) and subsequently challenged with gefitinib treatment. The changes in apoptosis and miR‐345/miR‐498 expression were analysed by flow cytometry and q‐PCR respectively. The functions of miR‐345/miR‐498 were verified by CCK‐8 assay, cell cycle analysis, dual‐luciferase reporter gene assay and immunoblotting analysis. Our results showed that the expression of miR‐345 and miR‐498 significantly decreased in gefitinib resistant NSCLC cells. TMS pre‐treatment significantly upregulated the expression of miR‐345 and miR‐498 increasing the sensitivity of NSCLC cells to gefitinib and inducing apoptosis. MiR‐345 and miR‐498 were verified to inhibit proliferation by cell cycle arrest and regulate the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways by directly targeting MAPK1 and PIK3R1 respectively. The combination of TMS and gefitinib promoted apoptosis also by miR‐345 and miR‐498 targeting the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways. Our study demonstrated that TMS reduced gefitinib resistance in NSCLCs via suppression of the MAPK/Akt/Bcl‐2 pathway by upregulation of miR‐345/498. These findings would lay the theoretical basis for the future study of TMS for the treatment of EGFR‐TKI resistance in NSCLCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号