首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background

Clinical trials have shown that treatment of patients with type 2 diabetes with pioglitazone, a peroxisome proliferator-activated receptor (PPAR)γ agonist, reduces cardiovascular events. However, the effect of PPARγ agonists on endoplasmic reticulum (ER) stress that plays an important role in the progression of atherosclerosis has not been determined. We sought to determine the effect of PPARγ agonists on ER stress induced by palmitate, the most abundant saturated fatty acid in the serum.

Methods and Results

Protein expression of ER stress marker was evaluated by Western blot analysis and stearoyl-CoA desaturase1 (SCD-1) mRNA expression was evaluated by qRT-PCR. Macrophage apoptosis was detected by flowcytometry. Pioglitazone and rosiglitazone reduced palmitate-induced phosphorylation of PERK, a marker of ER stress, in RAW264.7, a murine macrophage cell line. Pioglitazone also suppressed palmitate-induced apoptosis in association with inhibition of CHOP expression, JNK phosphorylation and cleavage of caspase-3. These effects of pioglitazone were reversed by GW9662, a PPARγ antagonist, indicating that PPARγ is involved in this process. PPARγ agonists increased expression of SCD-1 that introduces a double bond on the acyl chain of long-chain fatty acid. 4-(2-Chlorophenoxy)-N-(3-(3-methylcarbamoyl)phenyl)piperidine-1-carboxamide, an inhibitor of SCD-1, abolished the anti-ER stress and anti-apoptotic effects of pioglitazone. These results suggest that PPARγ agonists attenuate palmitate-induced ER stress and apoptosis through SCD-1 induction. Up-regulation of SCD-1 may contribute to the reduction of cardiovascular events by treatment with PPARγ agonists.  相似文献   

4.
Insulin resistance, tissue inflammation, and adipose tissue dysfunction are features of obesity and Type 2 diabetes. We generated adipocyte-specific Nuclear Receptor Corepressor (NCoR) knockout (AKO) mice to investigate the function of NCoR in adipocyte biology, glucose and insulin homeostasis. Despite increased obesity, glucose tolerance was improved in AKO mice, and clamp studies demonstrated enhanced insulin sensitivity in liver, muscle, and fat. Adipose tissue macrophage infiltration and inflammation were also decreased. PPARγ response genes were upregulated in adipose tissue from AKO mice and CDK5-mediated PPARγ ser-273 phosphorylation was reduced, creating a constitutively active PPARγ state. This identifies NCoR as an adaptor protein that enhances the ability of CDK5 to associate with and phosphorylate PPARγ. The dominant function of adipocyte NCoR is to transrepress PPARγ and promote PPARγ ser-273 phosphorylation, such that NCoR deletion leads to adipogenesis, reduced inflammation, and enhanced systemic insulin sensitivity, phenocopying the TZD-treated state.  相似文献   

5.
6.
Trans-10, cis-12 conjugated linoleic acid (t10c12 CLA) reduces triglyceride (TG) levels in adipocytes through multiple pathways, with AMP-activated protein kinase (AMPK) generally facilitating, and peroxisome proliferator-activated receptor γ (PPARγ) generally opposing these reductions. Sirtuin 1 (SIRT1), a histone/protein deacetylase that affects energy homeostasis, often functions coordinately with AMPK, and is capable of binding to PPARγ, thereby inhibiting its activity. This study investigated the role of SIRT1 in the response of 3T3-L1 adipocytes to t10c12 CLA by testing the following hypotheses: 1) SIRT1 is functionally required for robust TG reduction; and 2) SIRT1, AMPK, and PPARγ cross regulate each other. These experiments were performed by using activators, inhibitors, or siRNA knockdowns that affected these pathways in t10c12 CLA-treated 3T3-L1 adipocytes. Inhibition of SIRT1 amounts or activity using siRNA, sirtinol, nicotinamide, or etomoxir attenuated the amount of TG loss, while SIRT1 activator SRT1720 increased the TG loss. SRT1720 increased AMPK activity while sirtuin-specific inhibitors decreased AMPK activity. Reciprocally, an AMPK inhibitor reduced SIRT1 activity. Treatment with t10c12 CLA increased PPARγ phosphorylation in an AMPK-dependent manner and increased the amount of PPARγ bound to SIRT1. Reciprocally, a PPARγ agonist attenuated AMPK and SIRT1 activity levels. These results indicated SIRT1 increased TG loss and that cross regulation between SIRT1, AMPK, and PPARγ occurred in 3T3-L1 adipocytes treated with t10c12 CLA.  相似文献   

7.
8.
9.
Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent complication of obesity, yet cellular mechanisms that lead to its development are not well defined. Previously, we have documented hepatic steatosis in mice carrying a mutation in the Sec61a1 gene. Here we examined the mechanism behind NAFLD in Sec61a1 mutant mice. Livers of mutant mice exhibited upregulation of Pparg and its target genes Cd36, Cidec, and Lpl, correlating with increased uptake of fatty acid. Interestingly, these mice also displayed activation of the heat shock response (HSR), with elevated levels of heat shock protein (Hsp) 70, Hsp90, and heat shock factor 1. In cell lines, inhibition of Hsp90 function reduced Pparγ signaling and protein levels. Conversely, overexpression of Hsp90 increased Pparγ signaling and protein levels by reducing degradation. This may occur via a physical interaction as Hsp90 and Pparγ coimmunoprecipitated in vivo. Furthermore, inhibition of Hsp90 in Sec61a1 mutant hepatocytes also reduced Pparγ protein levels and signaling. Finally, overexpression of Hsp90 in liver cell lines increased neutral lipid accumulation, and this accumulation was blocked by Hsp90 inhibition. Our results show that the HSR and Hsp90 play an important role in the development of NAFLD, opening new avenues for the prevention and treatment of this highly prevalent disease.  相似文献   

10.
11.
ABSTRACT

SIRT1, the best-characterized member of the sirtuin family of deacetylases, is involved in cancer, apoptosis, inflammation, and metabolism. Active regulator of SIRT1 (AROS) was the first identified direct regulator of SIRT1. An increasing number of reports have indicated that SIRT1 plays an important role in controlling brain tumors. Here, we demonstrated that depletion of SIRT1 and AROS increases doxorubicin-mediated apoptosis in human neuroblastoma SH-SY5Y cells. Glycogen synthase kinase 3β (GSK3β) promoted doxorubicin-mediated apoptosis, but this effect was abolished by overexpression of SIRT1 and AROS. Interestingly, SIRT1 and AROS interacted with GSK3β and increased inhibitory phosphorylation of GSK3β on Ser9. Finally, we determined that AROS cooperates with SIRT1 to suppress GSK3β acetylation. Taken together, our results suggest that SIRT1 and AROS inhibit GSK3β activity and provide additional insight into drug resistance in the treatment of neuroblastoma.  相似文献   

12.
The nuclear receptor peroxisome proliferator-activated receptors (PPARs) are important in regulating lipid metabolism and inflammatory responses in macrophages. Activation of PPARγ represses key inflammatory response gene expressions. Recently, we identified a new cholesterol metabolite, 25-hydroxycholesterol-3-sulfate (25HC3S), as a potent regulatory molecule of lipid metabolism. In this paper, we report the effect of 25HC3S and its precursor 25-hydroxycholesterol (25HC) on PPARγ activity and on inflammatory responses. Addition of 25HC3S to human macrophages markedly increased nuclear PPARγ and cytosol IκB and decreased nuclear NF-κB protein levels. PPARγ response element reporter gene assays showed that 25HC3S significantly increased luciferase activities. PPARγ competitor assay showed that the K(i) for 25HC3S was ~1 μM, similar to those of other known natural ligands. NF-κB-dependent promoter reporter gene assays showed that 25HC3S suppressed TNFα-induced luciferase activities only when cotransfected with pcDNAI-PPARγ plasmid. In addition, 25HC3S decreased LPS-induced expression and release of IL-1β. In the PPARγ-specific siRNA transfected macrophages or in the presence of PPARγ-specific antagonist, 25HC3S failed to increase IκB and to suppress TNFα and IL-1β expression. In contrast to 25HC3S, its precursor 25HC, a known liver X receptor ligand, decreased nuclear PPARγ and cytosol IκB and increased nuclear NF-κB protein levels. We conclude that 25HC3S acts in macrophages as a PPARγ ligand and suppresses inflammatory responses via the PPARγ/IκB/NF-κB signaling pathway.  相似文献   

13.
Aim: Previous studies have demonstrated that the dysregulated-secretion of adipokines by adipocytes may contribute to obesity-associated atherosclerosis (As) and high density lipoprotein (HDL) may protect against atherogenesis through multiple pathways. This study was to explore the effect of HDL on the oxLDL uptake in inflammatory adipocytes stimulated by endotoxin lipopolysaccharide (LPS) and the possible mechanism.Methods and Results: 3T3-L1 adipocytes were cultured and induced to differentiation and maturation. Acute inflammation in adipocytes was induced by LPS (100 ng/ml) for 6 hours. The adipocytes were pretreated with HDL in various concentrations (10, 50, 100 μg/ml) for 16 hours or with specific PPARγ antagonist (GW9662, 10 μM) or agonist (Rosiglitazone, 10 μM) for 30 min before administration of LPS. The results showed that LPS significantly increased the release of inflammation-related adipokines, such as monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor 1 (PAI-1), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-8 and IL-6, while decreasing the release of leptin and adiponectin. Meanwhile, LPS reduced the uptake and degradation of 125I-oxLDL, and down-regulated the expression of PPARγ and CD36. Pretreatment with HDL dose-dependently affected the release of IL-8 and IL-6 and the reduced uptake and degradation of oxLDL of adipocytes stimulated by LPS, accompanied with marked upregulation of PPARγ and CD36 expression. Pretreatment with GW9662 markedly inhibited the upregulation of CD36 expression mediated by HDL (100 μg/ml), while the effects of Rosiglitazone were opposite to GW9662.Conclusions: HDL may increase oxLDL uptake of inflammatory adipocytes stimulated by LPS via upregulation of PPARγ/CD36 pathway, which may be a new mechanism of anti-atherosclerosis mediated by HDL.  相似文献   

14.
15.
Adipocyte differentiation is a multistep program under regulation by several factors. Peroxisome proliferator-activated receptor γ (PPARγ) serves as a master regulator of adipogenesis. However, the endogenous ligand for PPARγ remained elusive until 15-keto-PGE2 was identified recently as an endogenous PPARγ ligand. In this study, we demonstrate that zinc-containing alcohol dehydrogenase 2 (ZADH2; here termed prostaglandin reductase-3, PTGR-3) is a new member of prostaglandin reductase family that converts 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. Adipogenesis is accelerated when endogenous PTGR-3 is silenced in 3T3-L1 preadipocytes, whereas forced expression of PTGR-3 significantly decreases adipogenesis. PTGR-3 expression decreased during adipocyte differentiation, accompanied by an increased level of 15-keto-PGE2. 15-keto-PGE2 exerts a potent proadipogenic effect by enhancing PPARγ activity, whereas overexpression of PTGR-3 in 3T3-L1 preadipocytes markedly suppressed the proadipogenic effect of 15-keto-PGE2 by repressing PPARγ activity. Taken together, these findings demonstrate for the first time that PTGR-3 is a novel 15-oxoprostaglandin-Δ13-reductase and plays a critical role in modulation of normal adipocyte differentiation via regulation of PPARγ activity. Thus, modulation of PTGR-3 might provide a novel avenue for treating obesity and related metabolic disorders.  相似文献   

16.
17.
18.
Herbal plants are enriched with compounds with a wide range of biological activities. Furanodiene is a sesquiterpene isolated from Rhizoma Curcumae. Growing evidence shows furanodiene exhibits diversified activities of hepatoprotection, anti-inflammation, anti-angiogenesis, and anti-tumor. However, its biological activities against breast cancer have not been deeply understood, and its potential as an anti-breast cancer agent combined with tamoxifen (TAM) has not been evaluated so far. This study describes the combined effects of furanodiene and TAM in human breast cancer cells in vitro. The results showed that ERa-negative MDA-MB-231 cells were much more sensitive than ERa-positive MCF-7 cells to the growth inhibition due to furanodiene. Combined administration of furanodiene and TAM led to marked increase in growth inhibition, cell cycle arrest and pro-apoptotic activity in ERa-positive cells compared to individual agent, and enhanced the down-regulation of p-cyclin D1, cyclin D1, CDK2, CDK6, p-Rb, Rb and p-p44, and the up-regulation of p27, Bax and Bad, but did not show increased cytotoxicity in ERa-negative MCF-10A non-tumorigenic breast epithelial cells. Co-incubation induced the typical PARP cleavage or caspase 9 cleavages compared to individual agent. In addition, PPARγ activity inhibition by its antagonist T0070907 did not significantly reverse the enhanced effect of furanodiene and TAM suggesting that anti-cancer properties of combination were PPARγ independent. Our data indicated that furanodiene could enhance the growth inhibitory and pro-apoptotic activity of TAM by inducing cell cycle arrest and cell apoptosis via CDKs-cyclins and mitochondria-caspases-dependent, and PPARγ-independent signaling pathways in breast cancer cells, without contributions to the cytotoxicity of TAM.  相似文献   

19.
The effect of the PPARγ agonistic action of an AT1 receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPARγ in white adipose tissue and the DNA-binding activity of PPARγ in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPARγ and improved adipose tissue dysfunction including insulin resistance.  相似文献   

20.
Recent evidence in adipocytes points to a role for synuclein-γ in metabolism and lipid droplet dynamics, but interestingly this factor is also robustly expressed in peripheral neurons. Specific regulation of the synuclein-γ gene (Sncg) by PPARγ requires further evaluation, especially in peripheral neurons, prompting us to test if Sncg is a bona fide PPARγ target in murine adipocytes and peripheral somatosensory neurons derived from the dorsal root ganglia (DRG). Sncg mRNA was decreased in 3T3-L1 adipocytes (~68%) by rosiglitazone, and this effect was diminished by the PPARγ antagonist T0070907. Chromatin immunoprecipitation experiments confirmed PPARγ protein binding at two promoter sequences of Sncg during 3T3-L1 adipogenesis. Rosiglitazone did not affect Sncg mRNA expression in murine cultured DRG neurons. In subcutaneous human WAT samples from two cohorts treated with pioglitazone (>11 wks), SNCG mRNA expression was reduced, albeit highly variable and most evident in type 2 diabetes. Leptin (Lep) expression, thought to be coordinately-regulated with Sncg based on correlations in human adipose tissue, was also reduced in 3T3-L1 adipocytes by rosiglitazone. However, Lep was unaffected by PPARγ antagonist, and the LXR agonist T0901317 significantly reduced Lep expression (~64%) while not impacting Sncg. The results support the concept that synuclein-γ shares some, but not all, gene regulators with leptin and is a PPARγ target in adipocytes but not DRG neurons. Regulation of synuclein-γ by cues such as PPARγ agonism in adipocytes is logical based on recent evidence for an important role for synuclein-γ in the maintenance and dynamics of adipocyte lipid droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号