首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The oxidative environment and protein damage   总被引:21,自引:0,他引:21  
Proteins are a major target for oxidants as a result of their abundance in biological systems, and their high rate constants for reaction. Kinetic data for a number of radicals and non-radical oxidants (e.g. singlet oxygen and hypochlorous acid) are consistent with proteins consuming the majority of these species generated within cells. Oxidation can occur at both the protein backbone and on the amino acid side-chains, with the ratio of attack dependent on a number of factors. With some oxidants, damage is limited and specific to certain residues, whereas other species, such as the hydroxyl radical, give rise to widespread, relatively non-specific damage. Some of the major oxidation pathways, and products formed, are reviewed. The latter include reactive species, such as peroxides, which can induce further oxidation and chain reactions (within proteins, and via damage transfer to other molecules) and stable products. Particular emphasis is given to the oxidation of methionine residues, as this species is readily oxidised by a wide range of oxidants. Some side-chain oxidation products, including methionine sulfoxide, can be employed as sensitive, specific, markers of oxidative damage. The product profile can, in some cases, provide valuable information on the species involved; selected examples of this approach are discussed. Most protein damage is non-repairable, and has deleterious consequences on protein structure and function; methionine sulfoxide formation can however be reversed in some circumstances. The major fate of oxidised proteins is catabolism by proteosomal and lysosomal pathways, but some materials appear to be poorly degraded and accumulate within cells. The accumulation of such damaged material may contribute to a range of human pathologies.  相似文献   

2.
Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7–23 m−1 s−1) were significantly higher than that measured for H2O2 (1.5 m−1 s−1). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1–1.5 × 103 m−1 s−1. Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems.  相似文献   

3.
Free radicals and reactive oxygen or nitrogen species generated during oxidative stress and as by-products of normal cellular metabolism may damage all types of biological molecules. Proteins are major initial targets in cell. Reactions of a variety of free radicals and reactive oxygen and nitrogen species with proteins can lead to oxidative modifications of proteins such as protein hydroperoxides formation, hydroxylation of aromatic groups and aliphatic amino acid side chains, nitration of aromatic amino acid residues, oxidation of sulfhydryl groups, oxidation of methionine residues, conversion of some amino acid residues into carbonyl groups, cleavage of the polypeptide chain and formation of cross-linking bonds. Such modifications of proteins leading to loss of their function (enzymatic activity), accumulation and inhibition of their degradation have been observed in several human diseases, aging, cell differentiation and apoptosis. Formation of specific protein oxidation products may be used as biomarkers of oxidative stress.  相似文献   

4.
Oxidation is one of the major chemical degradation pathways for protein pharmaceuticals. Methionine, cysteine, histidine, tryptophan, and tyrosine are the amino acid residues most susceptible to oxidation due to their high reactivity with various reactive oxygen species. Oxidation during protein processing and storage can be induced by contaminating oxidants, catalyzed by the presence of transition metal ions and induced by light. Oxidative modification depends on the structural features of the proteins as well as the particular oxidation mechanisms inherent in various oxidative species, and may also be influenced by pH, temperature, and buffer composition. Protein oxidation may result in loss of biological activity and other undesirable pharmaceutical consequences. Strategies to stabilize proteins against oxidation can be classified into intrinsic methods (site-directed mutagenesis and chemical modification), physical methods (solid vs. liquid formulations) and use of chemical additives. The optimum choice of chemical additives needs to be evaluated on the basis of the specific oxidation mechanism. Oxidation induced by the presence of oxidants in the system is referred to as a non-site-specific mechanism. Under such conditions, oxidation can be effectively inhibited by the appropriate addition of antioxidants or free radical scavengers. metal-catalyzed oxidation is a site-specific process, in which the addition of antioxidants may accelerate the oxidation reaction. Careful screening of chelating agents has been shown to be an alternative method for preventing metal-catalyzed oxidation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
Stadtman ER  Levine RL 《Amino acids》2003,25(3-4):207-218
Summary. We summarize here results of studies designed to elucidate basic mechanisms of reactive oxygen (ROS)-mediated oxidation of proteins and free amino acids. These studies have shown that oxidation of proteins can lead to hydroxylation of aromatic groups and aliphatic amino acid side chains, nitration of aromatic amino acid residues, nitrosylation of sulfhydryl groups, sulfoxidation of methionine residues, chlorination of aromatic groups and primary amino groups, and to conversion of some amino acid residues to carbonyl derivatives. Oxidation can lead also to cleavage of the polypeptide chain and to formation of cross-linked protein aggregates. Furthermore, functional groups of proteins can react with oxidation products of polyunsaturated fatty acids and with carbohydrate derivatives (glycation/glycoxidation) to produce inactive derivatives. Highly specific methods have been developed for the detection and assay of the various kinds of protein modifications. Because the generation of carbonyl derivatives occurs by many different mechanisms, the level of carbonyl groups in proteins is widely used as a marker of oxidative protein damage. The level of oxidized proteins increases with aging and in a number of age-related diseases. However, the accumulation of oxidized protein is a complex function of the rates of ROS formation, antioxidant levels, and the ability to proteolytically eliminate oxidized forms of proteins. Thus, the accumulation of oxidized proteins is also dependent upon genetic factors and individual life styles. It is noteworthy that surface-exposed methionine and cysteine residues of proteins are particularly sensitive to oxidation by almost all forms of ROS; however, unlike other kinds of oxidation the oxidation of these sulfur-containing amino acid residues is reversible. It is thus evident that the cyclic oxidation and reduction of the sulfur-containing amino acids may serve as an important antioxidant mechanism, and also that these reversible oxidations may provide an important mechanism for the regulation of some enzyme functions.  相似文献   

6.
Nonenzymatic modification of proteins is one of the key pathogenic factors in diabetic complications. Uncovering the mechanisms of protein damage caused by glucose is fundamental to understanding this pathogenesis and in the development of new therapies. We investigated whether the mechanism involving reactive oxygen species can propagate protein damage in glycation reactions beyond the classical modifications of lysine and arginine residues. We have demonstrated that glucose can cause specific oxidative modification of tryptophan residues in lysozyme and inhibit lysozyme activity. Furthermore, modification of tryptophan residues was also induced by purified albumin-Amadori, a ribose-derived model glycation intermediate. The AGE inhibitor pyridoxamine (PM) prevented the tryptophan modification, whereas another AGE inhibitor and strong carbonyl scavenger, aminoguanidine, was ineffective. PM specifically inhibited generation of hydroxyl radical from albumin-Amadori and protected tryptophan from oxidation by hydroxyl radical species. We conclude that oxidative degradation of either glucose or the protein-Amadori intermediate causes oxidative modification of protein tryptophan residues via hydroxyl radical and can affect protein function under physiologically relevant conditions. This oxidative stress-induced structural and functional protein damage can be ameliorated by PM via sequestration of catalytic metal ions and scavenging of hydroxyl radical, a mechanism that may contribute to the reported therapeutic effects of PM in the complications of diabetes.  相似文献   

7.
We examined the distribution of N-formylkynurenine, a product of the dioxidation of tryptophan residues in proteins, throughout the human heart mitochondrial proteome. This oxidized amino acid is associated with a distinct subset of proteins, including an over-representation of complex I subunits as well as complex V subunits and enzymes involved in redox metabolism. No relationship was observed between the tryptophan modification and methionine oxidation, a known artifact of sample handling. As the mitochondria were isolated from normal human heart tissue and not subject to any artificially induced oxidative stress, we suggest that the susceptible tryptophan residues in this group of proteins are "hot spots" for oxidation in close proximity to a source of reactive oxygen species in respiring mitochondria.  相似文献   

8.
The effects of irradiation of pig kidney Dopa decarboxylase by visible light absorbed by the intrinsic chromophore, pyridoxal-P, and by the externally added dyes, pyridoxal-P or proflavin, have been studied. In all cases inactivation was observed, even though to different extens, which seemed to be essentially correlated to tryptophanyl residues photodestruction. Kinetics of inactivation and oxidation of these amino acid residues revealed the presence of two distinct groups of tryptophan residues with different photooxidation rate constants. A different role for these classes of residues in the structure and function of Dopa decarboxylase has been suggested.  相似文献   

9.
Milligan JR  Tran NQ  Ly A  Ward JF 《Biochemistry》2004,43(17):5102-5108
Guanyl radical species are produced in DNA by electron removal caused by ionizing radiation, photoionization, oxidation, or photosensitization. DNA guanyl radicals can be reduced by electron donation from mild reducing agents. Important biologically relevant examples are the redox active amino acids cysteine, cystine, methionine, tryptophan, and tyrosine. We have quantified the reactivity of derivatives of these amino acids with guanyl radicals located in plasmid DNA. The radicals were produced by electron removal using the single electron oxidizing agent (SCN)(2)(*)(-). Disulfides (cystine) are unreactive. Thioethers (methionine), thiols (cysteine), and phenols (tyrosine) react with rate constants in the range 10(4)-10(6), 10(5)-10(6), and 10(5)-10(6) dm(3) mol(-1) s(-1), respectively. Indoles (tryptophan) are the most reactive with rate constants of 10(7)-10(8) dm(3) mol(-1) s(-1). Selenium analogues of amino acids are over an order of magnitude more reactive than their sulfur equivalents. Increasing positive charge is associated with a ca. 10-fold increase in reactivity. The results suggest that amino acid residues located close to DNA (for example, in DNA binding proteins such as histones) might participate in the repair of oxidative DNA damage.  相似文献   

10.
Specific features of metal-catalyzed oxidation (MCO) of purified proteins (human serum albumin and human erythrocyte superoxide dismutase) were analyzed by the oxidation level of tryptophan and tyrosine. The production of dityrosine cross-links and the oxidation of tryptophan residues were recorded by fluorescence. The degree of oxidative modification of the amino acid residues of the proteins depended on the concentration of the Fenton's medium components and on the incubation time. These changes were different in different proteins. By electrophoresis and gel-permeation chromatography, changes in the superoxide dismutase structure are shown to be caused by oxidative modification of the enzyme and to be accompanied by a decrease in its activity. Findings with OH. scavengers (mannitol and ethanol) suggest that oxidative modification of the proteins in Fenton's medium should be associated not only with hydroxyl radical but also with ferryl and perferryl ions and with the radical PH3.  相似文献   

11.
Energy transfer between excited triplet states of aromatic amino acid residues was observed at 1.4 degrees K. The distance necessary for energy transfer between monomeric tyrosine and tryptophan residues was determined to be roughly 63 A. Total phosphorescence decay rate constants for several proteins were determined while emission corresponding to tyrosine and tryptophan residues was monitored. The observed decay rate constants are interpreted in terms of intramolecular interactions of the polypeptide residues.  相似文献   

12.
Metal-catalyzed oxidation (MCO) of proteins leads to the conversion of some amino acid residues to carbonyl derivatives, and may result in loss of protein function. It is well documented that reactions with oxidation products of sugars, lipids, and amino acids can lead to the conversion of some lysine residues of proteins to N(epsilon)-(carboxymethyl)lysine (CML) derivatives, and that this increases their metal binding capacity. Because post-translational modifications that enhance their metal binding capacity should also increase their susceptibility to MCO, we have investigated the effect of lysine carboxymethylation on the oxidation of bovine serum albumin (BSA) by the Fe(3+)/ascorbate system. Introduction of approximately 10 or more mol CML/mol BSA led to increased formation of carbonyls and of the specific oxidation products glutamic and adipic semialdehydes. These results support the view that the generation of CML derivatives on proteins may contribute to the oxidative damage that is associated with aging and a number of age-related diseases.  相似文献   

13.
In order to elucidate the role of individual amino acid residues on the conformational stability of a protein, the stabilities of the wild-type tryptophan synthase α-subunit from Escherichia coil and its five mutant proteins substituted by single amino acid residues at the same position 49 were compared. The five mutant proteins have glutamine, methionine, valine, serine, or tyrosine in place of glutamic acid of the wild-type protein at position 49. Denaturation of these proteins, which consist of two domains, by guanidine hydrochloride can be analyzed as a two-step process. We obtained the equilibrium constants between the native and the denatured forms and between the native and the stable intermediate forms for the above six proteins in the absence of denaturant at three pH values.  相似文献   

14.
Incubation of streptokinase in an H2O2-dioxane-bicarbonate buffer (pH 8.5) system leads to the oxidation of tryptophan residues as can be evidenced from the changes in absorption and tryptophan fluorescence spectra. A complete oxidation of tryptophan residues of the protein takes place within 3 hours, the number of the residues is 4. The first tryptophanyl of the protein is oxidized the most easily; the activity of streptokinase decreases thereby by 50%. Modification of the second residue leads to complete inactivation of streptokinase. The rate constants for the oxidation of the first, of the two first and of the third plus fourth tryptophanyls are equal to 1.5.10(-2) min-1, 1,1.10(-2) min-1 and 0.5.10(-2) min -1, respectively. The complete oxidation of tryptophan residues is concomitant with the inability of streptokinase to form stable equimolar complexes with human plasminogen, but in does not result (as can be judged from the CD spectroscopy data) in the breakdown of the protein secondary structure. The specificity of oxidation of the protein tryptophan residues is discussed. The importance of readily oxidized tryptophan residues for the streptokinase function is postulated.  相似文献   

15.
Protoporphyrin-sensitized photooxidation in human red blood cell membranes leads to severe deterioration of membrane structure and function. The membrane damage is caused by direct oxidation of amino acid residues, with subsequent cross-linking of membrane proteins. The chemical nature of these cross-links was studied in model systems, isolated spectrin and red cell ghosts. Cysteine and methionine are not involved in the cross-linking reaction. Further it could be shown that dityrosine formation, the crucial mechanism in oxidative cross-linking of proteins by peroxidase-H2O2 treatment, plays no role in photodynamic cross-linking. Experimental evidence indicated that a secondary reaction between free amino groups and a photooxidation product of histidine, tyrosine or tryptophan is involved in photodynamic cross-linking. This was deduced from the reaction observed between compounds containing a free amino group and photooxidation products of these amino acids, both in model systems, isolated spectrin and erythrocyte ghosts. In accordance, succinylation of free amino groups of membrane proteins or addition of compounds with free amino groups protected against cross-linking. Quantitative data and consideration of the reaction mechanisms of photodynamic oxidation of amino acids make it highly probable that an oxidation product of histidine rather than of tyrosine or tryptophan is involved in the cross-linking reaction, via a nucleophilic addition by free amino groups.  相似文献   

16.
Iron(II)/EDTA/ascorbate-mediated oxidative damage to specific amino acid residues (tryptophan) of serum albumin was studied. The active species generated by Fe(II)/EDTA/ascorbate preferred to react with tryptophan residues rather than histidine or other amino acids. The observation of preferential damage to tryptophan residues of the protein was fully suported by a model experiment using a tryptophan analogue. The reaction of Fe(II)/EDTA/ascorbate to the protein was significantly suppressed by mannitol and dimethysulfoxide, suggesting the participation of the hydroxyl radical generated via Fenton’s reaction. The result was supported by the hydroxyl radical assay using 2-deoxyribose.  相似文献   

17.
Sobrado P  Fitzpatrick PF 《Biochemistry》2003,42(47):13826-13832
The flavoprotein tryptophan 2-monooxygenase catalyzes the oxidative decarboxylation of tryptophan to indoleacetamide. We have previously identified tryptophan 2-monooxygenase as a homologue of L-amino acid oxidase [Sobrado, P., and Fitzpatrick, P. F. (2002) Arch. Biochem. Biophys. 402, 24-30]. On the basis of the sequence comparisons of the different LAAO family members, Arg98 of tryptophan 2-monooxygenase can be identified as an active site residue which interacts with the carboxylate of the amino acid substrate. The catalytic properties of R98K and R98A tryptophan 2-monooxygenase have been characterized to evaluate the role of this residue. Mutation of Arg98 to lysine decreases the first-order rate constant for flavin reduction by 180-fold and the second-order rate constant for flavin oxidation by 26-fold, has no significant effect on the K(d) value for tryptophan or the K(i) value for the competitive inhibitor indoleacetamide, and increases the K(i) value for indolepyruvate less than 2-fold. Mutation of this residue to alanine decreases the rate constants for reduction and oxidation an additional 5- and 2-fold, respectively, and increases the K(d) value for tryptophan and the K(i) value for indolepyruvate by 31- and 17-fold, respectively, while having an only 2-fold effect on the K(i) value for indoleacetamide. Both mutations increase the value of the primary deuterium isotope effect with tryptophan as a substrate, consistent with a later transition state. Both mutant enzymes catalyze a simple oxidase reaction, producing indolepyruvate and hydrogen peroxide. The pH dependences of the V/K(trp) values for the mutant enzymes show that the anionic form of the substrate is preferred but that the zwitterionic form is a substrate. The results are consistent with the interaction between Arg98 and the carboxylate of the amino acid substrate being critical for correct positioning of the substrate in the active site for efficient catalysis.  相似文献   

18.
A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be nonenzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only produced in the lysine and tryptophan oxidative pathways. To better understand the biology of protein glutarylation, we studied the relationship between enzymes within the lysine/tryptophan catabolic pathways, protein glutarylation, and regulation by the deglutarylating enzyme sirtuin 5 (SIRT5). Here, we identify glutarylation on the lysine oxidation pathway enzyme glutaryl-CoA dehydrogenase (GCDH) and show increased GCDH glutarylation when glutaryl-CoA production is stimulated by lysine catabolism. Our data reveal that glutarylation of GCDH impacts its function, ultimately decreasing lysine oxidation. We also demonstrate the ability of SIRT5 to deglutarylate GCDH, restoring its enzymatic activity. Finally, metabolomic and bioinformatic analyses indicate an expanded role for SIRT5 in regulating amino acid metabolism. Together, these data support a feedback loop model within the lysine/tryptophan oxidation pathway in which glutaryl-CoA is produced, in turn inhibiting GCDH function via glutaryl modification of GCDH lysine residues and can be relieved by SIRT5 deacylation activity.  相似文献   

19.
Tryptophan residues can possess a multitude of functions within a multidrug transport protein, e.g., mediating interactions with substrates or distal parts of the protein, or fulfilling a structural requirement, such as guiding the depth of membrane insertion. In this study, the nine tryptophan residues of the staphylococcal QacA multidrug efflux protein were individually mutated to alanine and phenylalanine, and the functional consequences of these changes were determined. Phenylalanine substitutions for each tryptophan residue were functionally tolerated. However, alanine modifications revealed an important functional role for three tryptophan residues, W58, W149, and W173, each of which is well conserved among QacA-related transport proteins in the major facilitator superfamily. The most functionally compromising mutation, an alanine substitution for W58, likely to be located at the extracellular interface of transmembrane segment 2, abolished all detectable QacA-mediated resistance and transport function. Second-site suppressor analyses identified several mutations that rescued the function of the W58A QacA mutant. Remarkably, all of these suppressor mutations were shown to be located in cytoplasmic loops between transmembrane helices 2 and 3 or 12 and 13, demonstrating novel functional associations between amino acid positions on opposite sides of the membrane and in distal N- and C-terminal regions of the QacA protein.  相似文献   

20.
In the presence of O2, Fe(III) or Cu(II), and an appropriate electron donor, a number of enzymic and nonenzymic oxygen free radical-generating systems are able to catalyze the oxidative modification of proteins. Whereas random, global modification of many different amino acid residues and extensive fragmentation occurs when proteins are exposed to oxygen radicals produced by high energy radiation, only one or a few amino acid residues are modified and relatively little peptide bond cleavage occurs when proteins are exposed to metal-catalyzed oxidation (MCO) systems. The available evidence indicates that the MCO systems catalyze the reduction of Fe(III) to Fe(II) and of O2 to H2O2 and that these products react at metal-binding sites on the protein to produce active oxygen (free radical?) species (viz; OH, ferryl ion) which attack the side chains of amino acid residues at the metal-binding site. Among other modifications, carbonyl derivatives of some amino acid residues are formed; prolyl and arginyl residues are converted to glutamylsemialdehyde residues, lysyl residues are likely converted to 2-amino-adipylsemialdehyde residues; histidyl residues are converted to asparagine and/or aspartyl residues; prolyl residues are converted to glutamyl or pyroglutamyl residues; methionyl residues are converted to methionylsulfoxide residues; and cysteinyl residues to mixed-disulfide derivatives. The biological significance of these metal ion-catalyzed reactions is highlighted by the demonstration: (i) that oxidative modification of proteins "marks" them for degradation by most common proteases and especially by the cytosolic multicatalytic proteinase from mammalian cells; (ii) protein oxidation contributes substantially to the intracellular pool of catalytically inactive and less active, thermolabile forms of enzymes which accumulate in cells during aging, oxidative stress, and in various pathological states, including premature aging diseases (progeria, Werner's syndrome), muscular dystrophy, rheumatoid arthritis, cataractogenesis, chronic alcohol toxicity, pulmonary emphysema, and during tissue injury provoked by ischemia-reperfusion. Furthermore, the metal ion-catalyzed protein oxidation is the basis of biological mechanisms for regulating changes in enzyme levels in response to shifts from anaerobic to aerobic metabolism, and probably from one nutritional state to another. It is also involved in the killing of bacteria by neutrophils and in the loss of neutrophil function following repeated cycles of respiratory burst activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号