首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gastric pathogen Helicobacter pylori undergoes genetic exchange at unusually high frequencies, primarily through natural transformation. Despite progress toward understanding the molecular mechanism of natural transformation in H. pylori, little is known about how competence is regulated or its relationship to DNA release. By measuring transformation incrementally throughout the growth curve, we show that H. pylori exhibits a novel pattern of competence with distinct peaks of transformation during both logarithmic and stationary growth phases. Furthermore, different H. pylori strains vary in the presence and timing of their competence peaks. We also examined the process of DNA release in relation to competence. Although extensive DNA release does not occur until late stationary phase, sufficient genomic DNA was present during the logarithmic phase to yield measurable transformants. These results demonstrate that the state of competence in H. pylori occurs in an unprecedented pattern during the growth curve with no clear relationship to DNA release.  相似文献   

2.
Helicobacter pylori is a genetically diverse bacterial species, owing in part to its natural competence for DNA uptake that facilitates recombination between strains. Inter-strain DNA recombination occurs during human infection and the H. pylori genome is in linkage equilibrium worldwide. Despite this high propensity for DNA exchange, little is known about the factors that limit the extent of recombination during natural transformation. Here, we identify restriction-modification (R-M) systems as a barrier to transformation with homeologous DNA and find that R-M systems and several components of the recombination machinery control integration length. Type II R-M systems, the nuclease nucT and resolvase ruvC reduced integration length whereas the helicase recG increased it. In addition, we characterized a new factor that promotes natural transformation in H. pylori, dprB. Although free recombination has been widely observed in H. pylori, our study suggests that this bacterium uses multiple systems to limit inter-strain recombination.  相似文献   

3.
Helicobacter pylori is a gram-negative bacterium that colonizes the human stomach, causes gastritis, and is associated with ulcers and gastric cancer. H. pylori is naturally competent for transformation. Natural genetic transformation is believed to be essential for the genetic plasticity observed in this species. While the relevance of horizontal gene transfer in H. pylori adaptiveness and antibiotic resistance is well documented, the DNA transformation machinery components are barely known. No enzymatic activity associated with the transformation process has been determined experimentally and described. We isolated, microsequenced, and cloned a major DNA nuclease from H. pylori. This protein, encoded by the open reading frame hp0323, was expressed in Escherichia coli. The purified protein, NucT, has a cation-independent thermostable nuclease activity that preferentially cleaves single-stranded DNA. NucT is associated with the membrane. NucT-deficient H. pylori strains are one or more orders of magnitude less efficient than the parental strain for transformation with either chromosomal or self-replicating plasmid DNA. To the best of our knowledge, NucT is the first nuclease identified in a gram-negative natural transformation system, and its existence suggests that there is a mechanism of DNA processing and uptake similar to the mechanisms in well-studied gram-positive systems.  相似文献   

4.
Genetic recombination in Helicobacter pylori is believed to be involved in host adaptation of this gastric pathogen and uptake of DNA by natural transformation can result in changes in virulence factors as well as antigenic variation. To elucidate the mechanisms involved in natural transformation we tested two genes with homology to known competence genes (dprA and traG) for their role in this process. Insertion mutants in these genes were constructed in two different H. pylori strains and their competence by natural transformation was compared to the wild-type. Mutation of the traG homolog did not reduce competence. Mutation of the dprA gene, however, severely impaired natural transformation both with plasmid and chromosomal DNA. Our data indicate that dprA and comB3 are essential parts of a common pathway for chromosomal and plasmid transformation.  相似文献   

5.
Restriction-modification (RM) systems are important for bacteria to limit foreign DNA invasion. The naturally competent bacterium Helicobacter pylori has highly diverse strain-specific type II systems. To evaluate the roles of strain-specific restriction in H. pylori natural transformation, a markerless type II restriction endonuclease-deficient (REd) mutant was constructed. We deleted the genes encoding all four active type II restriction endonucleases in H. pylori strain 26695 using sacB-mediated counterselection. Transformation by donor DNA with exogenous cassettes methylated by Escherichia coli was substantially (1.7 and 2.0 log(10) for cat and aphA, respectively) increased in the REd strain. There also was significantly increased transformation of the REd strain by donor DNA from other H. pylori strains, to an extent corresponding to their shared type II R-M system strain specificity with 26695. Comparison of the REd and wild-type strains indicates that restriction did not affect the length of DNA fragment integration during natural transformation. There also were no differentials in cell growth or susceptibility to DNA damage. In total, the data indicate that the type II REd mutant has enhanced competence with no loss of growth or repair facility compared to the wild type, facilitating H. pylori mutant construction and other genetic engineering.  相似文献   

6.
Helicobacter pylori is naturally competent for transformation, but the DNA uptake system of this bacterium is only partially characterized, and nothing is known about the regulation of competence in H. pylori. To identify other components involved in transformation or competence regulation in this species, we screened a mutant library for competence-deficient mutants. This resulted in the identification of a novel, Helicobacter-specific competence gene (comH) whose function is essential for transformation of H. pylori with chromosomal DNA fragments as well as with plasmids. Complementation of comH mutants in trans completely restored competence. Unlike other transformation genes of H. pylori, comH does not belong to a known family of orthologous genes. Moreover, no significant homologs of comH were identified in currently available databases of bacterial genome sequences. The comH gene codes for a protein with an N-terminal leader sequence and is present in both highly competent and less-efficient transforming H. pylori strains. A comH homolog was found in Helicobacter acinonychis but not in Helicobacter felis and Helicobacter mustelae.  相似文献   

7.
AIMS: The major transmission route of Helicobacter pylori remains unclear. In this study, we examined H. pylori in the environmental waters in Japan. METHODS AND RESULTS: A total of 24 water samples were collected from the upper, middle and downstream reaches of four Japanese rivers. Helicobacter pylori-specific DNA was examined using nested PCR. In addition, 224 children who lived near one river were studied by the stool antigen test for H. pylori prevalence. Helicobacter pylori DNA was detected in the water from the middle and downstream reaches of all four rivers, but not in the upper reaches. Helicobacter pylori was not found in cultured water samples with positive PCR results. Helicobacter pylori prevalence in the children examined was 9.8% for those living near the middle reaches and 23.8% nearby downstream, both of which were higher than the value in an area distant from the river (0%) (both, P < 0.01). CONCLUSIONS: Difference in H. pylori prevalence in the children may be related to the presence of H. pylori in the river. The results of this study showed that H. pylori DNA is frequently present in river water from the middle and downstream reaches in which the human biosphere is embedded. SIGNIFICANCE AND IMPACT OF THE STUDY: It is suggested that river water in the natural environment could be a risk factor for H. pylori transmission.  相似文献   

8.
Helicobacter pylori strains demonstrate substantial variability in the efficiency of transformation by plasmids from Escherichia coli, and many strains are completely resistant to transformation. Among the barriers to transformation are numerous strain-specific restriction-modification systems in H. pylori. We have developed a method to protect plasmid DNA from restriction by in vitro site-specific methylation using cell-free extracts of H. pylori before transformation. In two cases, plasmid DNA treated with cell-free extracts in vitro acquired the restriction pattern characteristic of genomic DNA from the source strain. Among three strains examined in detail, the transformation frequency by treated plasmid shuttle and suicide vectors was significantly increased compared with mock-treated plasmid DNA. The results indicate that the restriction barrier in H. pylori can be largely overcome by specific DNA methylation in vitro. The approach described should significantly enhance the ability to manipulate gene function in H. pylori and other organisms that have substantial restriction barriers to transformation.  相似文献   

9.
For naturally competent microorganisms, such as Helicobacter pylori, the steps that permit recombination of exogenous DNA are not fully understood. Immediately downstream of an H. pylori gene (dprA) that facilitates high-frequency natural transformation is HP0334 (dprB), annotated to be a putative Holliday junction resolvase (HJR). We showed that the HP0334 (dprB) gene product facilitates high-frequency natural transformation. We determined the physiologic roles of DprB by genetic analyses. DprB controls in vitro growth, survival after exposure to UV or fluoroquinolones, and intragenomic recombination. dprB ruvC double deletion dramatically decreases both homologous and homeologous transformation and survival after exposure to DNA-damaging agents. Moreover, the DprB protein binds to synthetic Holliday junction structures rather than double-stranded or single-stranded DNA. These results demonstrate that the dprB product plays important roles affecting inter- and intragenomic recombination. We provide evidence that the two putative H. pylori HJRs (DprB and RuvC) have overlapping but distinct functions involving intergenomic (primarily DprB) and intragenomic (primarily RuvC) recombination.  相似文献   

10.
To identify genes involved in DNA transformation, we generated 1500 insertion mutants of a Helicobacter pylori strain by transposon shuttle mutagenesis. All mutant strains were screened for their frequency of natural transformation. A total of 20 mutant strains were found to exhibit a significantly decreased transformation frequency. DNA sequencing revealed seven genetic loci, including the reported comB locus, HP0017 (a putative virB4 homologue) and five loci without database match (HP0015, HP1089, HP1326, HP1424, and HP1473) from the 20 mutants. Reknockout of HP1326 revealed no impairment in natural transformation, while the other 5 mutants showed the same defective in natural transformation. Mutation of HP0017 severely impaired natural transformation both chromosome and plasmid DNA. Slot blot analysis revealed that some noncompetent strains had decreased virB4 RNA expression levels compared with competent strains. Nineteen ORFs had decreased expression levels in virB4 knockout mutant by microarray. Therefore, our data indicate that HP0017 is a virB4 homologue and is essential in the natural competence of H. pylori. HP0015, HP1089, HP1424, and HP1473 genes could be also involved in natural transformation.  相似文献   

11.
Helicobacter pylori, Gram-negative, curved bacteria colonizing the human stomach, possess strain-specific complements of functional restriction-modification (R-M) systems. Restriction-modification systems have been identified in most bacterial species studied and are believed to have evolved to protect the host genome from invasion by foreign DNA. The large number of R-Ms homologous to those in other bacterial species and their strain-specificity suggest that H. pylori may have horizontally acquired these genes. A type IIs restriction-modification system, hpyIIRM, was active in two out of the six H. pylori strains studied. We demonstrate now that in most strains lacking M.HpyII function, there is complete absence of the R-M system. Direct DNA repeats of 80 bp flanking the hpyIIRM system allow its deletion, resulting in an "empty-site" genotype. We show that strains possessing this empty-site genotype and strains with a full but inactive hpyIIRM can reacquire the hpyIIRM cassette and functional activity through natural transformation by DNA from the parental R-M+ strain. Identical isolates divergent for the presence of an active HpyII R-M pose different restriction barriers to transformation by foreign DNA. That H. pylori can lose HpyII R-M function through deletion or mutation, and can horizontally reacquire the hpyIIRM cassette, is, in composite, a novel mechanism for R-M regulation, supporting the general hypothesis that H. pylori populations use mutation and transformation to regulate gene function.  相似文献   

12.
Helicobacter pylori is naturally competent for DNA transformation, but the mechanism by which transformation occurs is not known. For Haemophilus influenzae, dprA is required for transformation by chromosomal but not plasmid DNA, and the complete genomic sequence of H. pylori 26695 revealed a dprA homolog (HP0333). Examination of genetic databases indicates that DprA homologs are present in a wide variety of bacterial species. To examine whether HP0333 has a function similar to dprA of H. influenzae, HP0333, present in each of 11 strains studied, was disrupted in two H. pylori isolates. For both mutants, the frequency of transformation by H. pylori chromosomal DNA was markedly reduced, but not eliminated, compared to their wild-type parental strains. Mutation of HP0333 also resulted in a marked decrease in transformation frequency by a shuttle plasmid (pHP1), which differs from the phenotype described in H. influenzae. Complementation of the mutant with HP0333 inserted in trans in the chromosomal ureAB locus completely restored the frequency of transformation to that of the wild-type strain. Thus, while dprA is required for high-frequency transformation, transformation also may occur independently of DprA. The presence of DprA homologs in bacteria known not to be naturally competent suggests a broad function in DNA processing.  相似文献   

13.
The RecA protein is a central component of the homologous recombination machinery and of the SOS system in most bacteria. In performing these functions, it is involved in DNA repair processes and plays an important role in natural transformation competence. This may be especially important in Helicobacter pylori, where an unusually high degree of microdiversity among strains is generated by homologous recombination. We have suggested previously that the H. pylori RecA protein is subject to posttranslational modifications that result in a slight shift in its electrophoretic mobility. Here we show that at least two genes downstream of recA are involved in this modification and that this process is dependent on genes involved in glycosylation and lipopolysaccharide biosynthesis. Site-directed mutagenesis of a putative glycosylation site results in production of an unmodified RecA protein. This posttranslational modification is not involved in membrane targeting or cell division functions but is necessary for the full function of RecA in DNA repair. Thus, it might be an adaptation to the specific requirements of H. pylori in its natural environment.  相似文献   

14.
Helicobacter pylori is a human pathogen, whereas the natural hosts for 'Gastrospirillum hominis' and Helicobacter felis are animals. 'G. hominis' is occasionally found to cause infection in humans, whereas H. felis only rarely infects humans. The pathogenesis of H. pylori infection is not completely understood and in order to reveal differences in immune response to the three Helicobacter species, the upregulation of adherence molecule CD11b/CD18, chemotactic activity and oxidative burst response of neutrophils after stimulation with H. pylori, 'G. hominis' and H. felis sonicates, were compared. Like H. pylori, 'G. hominis' and H. felis induced upregulation of CD11b/CD18 and chemotaxis of neutrophils. 'G. hominis' demonstrated a more pronounced upregulation of CD11b/CD18, whereas H. felis was the strongest stimulant of neutrophil chemotaxis. H. felis was unable to stimulate neutrophils to oxidative burst response, whereas 'G. hominis' activated neutrophils in a dose-dependent way similar to H. pylori. 'G. hominis' and H. felis were both able to prime neutrophils for oxidative burst response similar to H. pylori. In conclusion, we observed clear differences in neutrophil responses to different Helicobacter species, which indicates that bacterial virulence factors may be important for the diversity in the pathogenetic outcome of Helicobacter infections.  相似文献   

15.
Although both bacillary and coccoid forms of Helicobacter pylori reside in human stomach, the pathophysiological significance of the two forms remains obscure. The present work describes the effect of oxygen tension on the transformation and reactive oxygen species (ROS) metabolism of this pathogen. Most H. pylori cultured under an optimum O2 concentration (7%) were the bacillary form, whereas about 80% of cells cultured under aerobic or anaerobic conditions were the coccoid form. The colony-forming unit of H. pylori decreased significantly under both aerobic and anaerobic culture conditions. The bacillary form of H. pylori generated predominantly superoxide radical, whereas the coccoid form generated preferentially hydroxyl radical. Specific activities of cellular respiration, urease, and superoxide dismatase decreased markedly after transformation of the bacillary form to the coccoid form, with concomitant generation of protein carbonyls and 8-hydroxyguanine. The frequency of mutation of cells increased significantly during culture under nonoptimum O2 conditions. These results indicate that ROS generated by H. pylori catalyze the oxidative modification of cellular DNA, thereby enhancing the transformation from the bacillary to the coccoid form. The enhanced generation of mutagenic hydroxyl radicals in the coccoid form might accelerate mutation and increase the genetic diversity of H. pylori.  相似文献   

16.
Exposure to unfavorable conditions results in the transformation of Helicobacter pylori, a gastric pathogen, from a bacillary form to a coccoid form. The mechanism and pathophysiological significance of this transformation remain unclear. The generation of the superoxide radical by H. pylori has previously been shown to inhibit the bactericidal action of nitric oxide, the concentration of which is relatively high in gastric juice. With the use of chemiluminescence probes, both the quality and quantity of reactive oxygen species generated by H. pylori have now been shown to change markedly during the transformation from the bacillary form to the coccoid form. The transformation of H. pylori was associated with oxidative modification of cellular proteins, including urease, an enzyme required for the survival of this bacterium in acidic gastric juice. Although the cellular abundance of urease protein increased during the transformation, the specific activity of the enzyme decreased and it underwent aggregation. Specific activities of both superoxide dismutase and catalase in H. pylori also decreased markedly during the transformation. The transformation of H. pylori was also associated with oxidative modification of DNA, as revealed by the generation of 8-hydroxyguanine, and subsequent DNA fragment. These observations indicate that oxidative stress elicited by endogenously generated reactive oxygen species might play an important role in the transformation of H. pylori from the bacillary form to the coccoid form.  相似文献   

17.
The generation of a RecA filament on single-stranded DNA is a critical step in homologous recombination. Two main pathways leading to the formation of the nucleofilament have been identified in bacteria, based on the protein complexes mediating RecA loading: RecBCD (AddAB) and RecFOR. Many bacterial species seem to lack some of the components involved in these complexes. The current annotation of the Helicobacter pylori genome suggests that this highly diverse bacterial pathogen has a reduced set of recombination mediator proteins. While it is now clear that homologous recombination plays a critical role in generating H. pylori diversity by allowing genomic DNA rearrangements and integration through transformation of exogenous DNA into the chromosome, no complete mediator complex is deduced from the sequence of its genome. Here we show by bioinformatics analysis the presence of a RecO remote orthologue that allowed the identification of a new set of RecO proteins present in all bacterial species where a RecR but not RecO was previously identified. HpRecO shares less than 15% identity with previously characterized homologues. Genetic dissection of recombination pathways shows that this novel RecO and the remote RecB homologue present in H. pylori are functional in repair and in RecA-dependent intrachromosomal recombination, defining two initiation pathways with little overlap. We found, however, that neither RecOR nor RecB contributes to transformation, suggesting the presence of a third, specialized, RecA-dependent pathway responsible for the integration of transforming DNA into the chromosome of this naturally competent bacteria. These results provide insight into the mechanisms that this successful pathogen uses to generate genetic diversity and adapt to changing environments and new hosts.  相似文献   

18.
Helicobacter pylori populations recovered from the human stomach display extensive recombination and quasispecies development, and this suggests frequent exchange of DNA between different strains in vivo. In vitro, however, most H. pylori strains display restriction to the uptake of non-self DNA, as measured using selectable markers, regardless of their competency for transformation with self DNA. We have examined the effect of different selectable markers on double-crossover recombination efficiencies in three reference strains (1061, 26695 & SS1) and one clinical isolate (CHP1) of H. pylori. All strains were efficiently transformable to kanamycin or chloramphenicol resistance by using self-genomic DNA from isogenic mutants bearing the aphA3 or cat cassettes, respectively. However, strains 26695 and CHP1 showed a 3-5-log reduction in transformation efficiency by non-self recombinant DNA containing aphA3, when compared to cat. Strain 1061 readily accepted either cassette, and strain SS1 was poorly tolerant of any non-self DNA. Genome-wide random mutagenesis of these strains was only achievable with a selectable marker that allowed high transformation efficiency. Digestion of 32P-labelled cassettes by H. pylori lysates mirrored the transformation results and indicated that in some strains these cassettes are the targets of enzymatic restriction.  相似文献   

19.
Helicobacter pylori isolates from different patients are characterized by diversity in the nucleotide sequences of individual genes, variation in genome size, and variation in gene order. Genetic diversity is particularly striking in vacuolating cytotoxin (vacA) alleles. In this study, five open reading frames (ORFs) were identified within a 4.2-kb region downstream from vacA in H. pylori 60190. One of these ORFs was closely related to the virulence-associated protein D (vapD) gene of Dichelobacter nodosus (64.9% nucleotide identity). A probe derived from vapD of H. pylori 60190 hybridized with only 19 (61.3%) of 31 H. pylori strains tested. Sequence analysis of the vapD region in vapD-negative H. pylori strains revealed that there were two different families of approximately 0.5-kb DNA segments, which were both unrelated to vapD. The presence of vapD was not associated with any specific family of vacA alleles. These findings are consistent with a recombinational population structure for H. pylori.  相似文献   

20.
Nowadays notions on the variability of Helicobacter pylori are reviewed. Genetic polymorphism of H. pylori is manifested by variability of gene properties and their order in different strains due to recombinations occurring in these bacteria much more frequently than in other bacterial species. H. pylori belongs to those bacteria which are capable of natural transformation. Transformation is very often observed both in vitro and in vivo. A significant role in the variability of H. pylori is played by transposons and specific nature of mutagenesis. The author emphasizes that differentiation between the roles played by recombinations and mutations in the variability of H. pylori is difficult. Special attention is paid to the resistance of H. pylori strains to chemotherapeutic drugs and to the mechanisms of its development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号