首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly of lipoprotein(a) (Lp(a)) is a two-step process which involves the interaction of kringle-4 (K-IV) domains in apolipoprotein(a) (apo(a)) with Lys groups in apoB-100. Lys analogues such as tranexamic acid (TXA) or delta-aminovaleric acid (delta-AVA) proved to prevent the Lp(a) assembly in vitro. In order to study the in vivo effect of Lys analogues, transgenic apo(a) or Lp(a) mice were treated with TXA or delta-AVA and plasma levels of free and low density lipoprotein bound apo(a) were measured. In parallel experiments, McA-RH 7777 cells, stably transfected with apo(a), were also treated with these substances and apo(a) secretion was followed. Treatment of transgenic mice with Lys analogues caused a doubling of plasma Lp(a) levels, while the ratio of free:apoB-100 bound apo(a) remained unchanged. In transgenic apo(a) mice a 1. 5-fold increase in plasma apo(a) levels was noticed. TXA significantly increased Lp(a) half-life from 6 h to 8 h. Incubation of McA-RH 7777 cells with Lys analogues resulted in an up to 1. 4-fold increase in apo(a) in the medium. The amount of intracellular low molecular weight apo(a) precursor remained unchanged. We hypothesize that Lys analogues increase plasma Lp(a) levels by increasing the dissociation of cell bound apo(a) in combination with reducing Lp(a) catabolism.  相似文献   

2.
Hancock MA  Spencer CA  Koschinsky ML 《Biochemistry》2004,43(38):12237-12248
Lipoprotein(a) [Lp(a)] is suggested to link atherosclerosis and thrombosis owing to the similarity between the apolipoprotein(a) [apo(a)] moiety of Lp(a) and plasminogen. Lp(a) may interfere with tPA-mediated plasminogen activation in fibrinolysis, thereby generating a hypercoaguable state in vivo. The present study employed surface plasmon resonance (SPR) to examine the binding interaction between plasminogen and a physiologically relevant, 17-kringle recombinant apo(a) species [17K r-apo(a)] in real time. Native, intact Glu(1)-plasminogen bound to apo(a) with substantially higher affinity (K(D) approximately 0.3 microM) compared to a series of plasminogen fragments (K1-5, K1-3, K4, K5P, and tail domain) that interacted weakly with apo(a) (K(D) > 50 microM). Treatment of Glu(1)-plasminogen with citraconic anhydride (a lysine modification reagent) completely abolished binding to wild-type 17K r-apo(a), whereas citraconylated 17K r-apo(a) decreased binding to wild-type Glu(1)-plasminogen by approximately 50%; inhibition of binding was also observed using the lysine analogue epsilon-aminocaproic acid. Whereas native Glu(1)-plasminogen exhibited monophasic binding to 17K r-apo(a), truncated Lys(78)-plasminogen exhibited biphasic binding. Altering Glu(1)-plasminogen from its native, closed conformation (in chloride buffer) to an open conformation (in acetate buffer) also yielded biphasic isotherms. These SPR data are consistent with a two-state kinetic model in which a conformational change in the plasminogen-apo(a) complex may occur following the initial binding event. Differential binding kinetics between Glu(1)-/Lys(78)-plasminogen and apo(a) may explain why Lp(a) is a stronger inhibitor of tPA-mediated Glu(1)-plasminogen activation compared to Lys(78)-plasminogen activation.  相似文献   

3.
Lipoprotein(a) (Lp(a)) is an atherosclerosis-causing lipoprotein that circulates in human plasma as a complex of low density lipoprotein (LDL) and apolipoprotein(a) (apo(a)). It is not known whether apo(a) attaches to LDL within hepatocytes prior to secretion or in plasma subsequent to secretion. Here we describe the development of a line of mice expressing the human apo(a) transgene under the control of the murine transferrin promoter. The apo(a) was secreted into the plasma, but circulated free of lipoproteins. When human (h)-LDL was injected intravenously, the circulating apo(a) rapidly associated with the lipoproteins, as determined by nondenaturing gel electrophoresis. Human HDL and mouse LDL had no such effect. When h-VLDL was injected, there was a delayed association of apo(a) with the lipoprotein fraction which suggests that apo(a) preferentially associated with a metabolic product of VLDL. The complex of apo(a) with LDL formed both in vivo and in vitro was resistant to boiling in the presence of detergents and denaturants, but was resolved upon disulfide reduction. These studies suggest that apo(a) fails to associate with mouse lipoproteins due to structural differences between human and mouse LDL, and that Lp(a) formation can occur in plasma through the association of apo(a) with circulating LDL.  相似文献   

4.
Lipoprotein(a) (Lp(a)) is an acute phase protein with unknown function. Lp(a) binds to low density lipoprotein (LDL) receptors, as well as to plasminogen (Plg) receptors. Preincubation of normal human skin fibroblasts with Lp(a) or with apo(a) cause a severalfold increase of LDL binding. Plg and kringle-4 of Plg have no effect. LDL receptor-negative fibroblasts respond upon preincubation with apo(a) with high affinity binding of LDL with Kd values that are almost identical with those of LDL binding to the LDL receptor. Incubation of apo(a)-pretreated fibroblasts with anti-apo(a) completely abolishes the increment of LDL binding. The high affinity LDL binding to LDL receptor-negative fibroblasts could be dissociated by approximately 80 and 54% with 5 mg/ml proline and 30 mg/ml NaCl, respectively, but not with dextran sulfate. The Lp(a)- and apo(a)-triggered LDL binding to fibroblasts have no effect on LDL internalization. These findings may reflect a key function in the role as an acute phase protein and may be relevant to the high atherogeneicity of Lp(a).  相似文献   

5.
Gadda G  Fitzpatrick PF 《Biochemistry》2000,39(6):1406-1410
Nitroalkane oxidase catalyzes the oxidation of nitroalkanes to aldehydes or ketones with production of nitrite and hydrogen peroxide. pH and kinetic isotope effects with [1, 1-(2)H(2)]nitroethane have been used to study the mechanism of this enzyme. The V/K(ne) pH profile is bell-shaped. A group with a pK(a) value of about 7 must be unprotonated and one with a pK(a) value of 9.5 must be protonated for catalysis. The lower pK(a) value is seen also in the pK(is) profile for the competitive inhibitor valerate, indicating that nitroethane has no significant external commitments to catalysis. The (D)(V/K)(ne) value is pH-independent with a value of 7.5, whereas the (D)V(max) value increases from 1.4 at pH 8.2 to a limiting value of 7.4 below pH 5. The V(max) pH profile decreases at low and high pH, with pK(a) values of 6.6 and 9.5, respectively. Imidazole, which activates the enzyme, affects the V(max) but not the V/K(ne) pH profile. In the presence of imidazole at pH 7 the (D)V(max) value increases to a value close to the intrinsic value, consistent with cleavage of the carbon-hydrogen bond of the substrate being fully rate-limiting for catalysis in the presence of imidazole.  相似文献   

6.
The assembly of lipoprotein(a) (Lp(a)) is a two-step process which involves the interaction of kringle-4 (K-IV) domains in apolipoprotein(a) (apo(a)) with Lys groups in apoB-100. Lys analogues such as tranexamic acid (TXA) or δ-aminovaleric acid (δ-AVA) proved to prevent the Lp(a) assembly in vitro. In order to study the in vivo effect of Lys analogues, transgenic apo(a) or Lp(a) mice were treated with TXA or δ-AVA and plasma levels of free and low density lipoprotein bound apo(a) were measured. In parallel experiments, McA-RH 7777 cells, stably transfected with apo(a), were also treated with these substances and apo(a) secretion was followed. Treatment of transgenic mice with Lys analogues caused a doubling of plasma Lp(a) levels, while the ratio of free:apoB-100 bound apo(a) remained unchanged. In transgenic apo(a) mice a 1.5-fold increase in plasma apo(a) levels was noticed. TXA significantly increased Lp(a) half-life from 6 h to 8 h. Incubation of McA-RH 7777 cells with Lys analogues resulted in an up to 1.4-fold increase in apo(a) in the medium. The amount of intracellular low molecular weight apo(a) precursor remained unchanged. We hypothesize that Lys analogues increase plasma Lp(a) levels by increasing the dissociation of cell bound apo(a) in combination with reducing Lp(a) catabolism.  相似文献   

7.
To delineate further the pathway of pepsin-catalysed reactions, three types of experiments were performed: (a) the enzyme-catalysed hydrolysis of a number of di- and tri-peptide substrates was studied with a view to observing the rate-determining breakdown of a common intermediate; (b) the interaction of pepsin with several possible substrates for which ;burst' kinetics might be expected was investigated; (c) attempts were made to trap a possible acyl-enzyme intermediate with [(14)C]methanol in both a hydrolytic reaction (with N-acetyl-l-phenylalanyl-l-phenylalanylglycine) and in a ;virtual' reaction (with N-acetyl-l-phenylalanine) under conditions where extensive hydrolysis or (18)O exchange is known to occur. It is concluded that (i) intermediates in pepsin-catalysed reactions (aside from the Michaelis complex) occur subsequently to the rate-determining transition state, and (ii) an acyl-enzyme intermediate, if such is formed, cannot be trapped with [(14)C]methanol in these systems.  相似文献   

8.
School-age children with high lipoprotein(a) [Lp(a)] levels were screened and family studies were conducted to examine the relationship between high Lp(a) levels and apolipoprotein(a) [apo(a)] isoforms in families. All the probands from 17 families had one of the A2 to A12 apo(a) isoforms, which are the smaller apo(a) isoforms of the 25 different isoforms thus far detected. The ratio of subjects with high plasma Lp(a) levels was 0.47 among the first-degree relatives. All 15 relatives with high plasma Lp(a) levels shared one of the small apo(a) isoforms with the proband in each family, while 16 of 17 relatives with normal Lp(a) levels did not. These data indicate the frequent occurrence of familial aggregations of high Lp(a) levels associated with one of the small apo(a) isoforms.  相似文献   

9.
Coronary heart disease risk correlates directly with plasma concentrations of lipoprotein(a) (Lp(a)), a low-density lipoprotein-like particle distinguished by the presence of the glycoprotein apolipoprotein(a) (apo(a)), which is bound to apolipoprotein B-100 (apoB-100) by disulfide bridges. Size isoforms of apo(a) are inherited as Mendelian codominant traits and are associated with variations in the plasma concentration of lipoprotein(a). Plasminogen and apo(a) show striking protein sequence homology, and their genes both map to chromosome 6q26-27. In a large family with early coronary heart disease and high plasma concentrations of Lp(a), we found tight linkage between apo(a) size isoforms and a DNA polymorphism in the plasminogen gene; plasma concentrations of Lp(a) also appeared to be related to genetic variation at the apo(a) locus. We found free recombination between the same phenotype and alleles of the apoB DNA polymorphism. This suggests that apo(a) size isoforms and plasma lipoprotein(a) concentrations are each determined by genetic variation at the apo(a) locus.  相似文献   

10.
To elucidate whether the C-terminal region in human adenylate kinase participates in the interaction with the substrate (MgATP(2-) and/or AMP(2-)), hydrophobic residues (Val182, Val186, Cys187, Leu190, and Leu193) were substituted by site-directed mutagenesis and the steady-state kinetics of fifteen mutants were analyzed. A change in the hydrophobic residues in the C-terminal domain affects the affinity for substrates (K(m)), that is, not only for MgATP(2-) but also for AMP(2-), and the catalytic efficiency (k(cat)). The results obtained have led to the following conclusions: (i) Val182 may interact with both MgATP(2-) and AMP(2-) substrates, but to a greater extent with MgATP(2-), and play a role in catalysis. (ii) Val186 appears to play a functional role in catalysis by interacting with both MgATP(2-) and AMP(2-) to nearly the same extent. (iii) Cys187 appears to play a functional role in catalysis. (iv) Leu190 appears to interact with both MgATP(2-) and AMP(2-) substrates but to a greater extent with AMP(2-). (v) Leu193 appears to interact with both MgATP(2-) and AMP(2-) but to a greater extent with AMP(2-). The activity of all mutants decreased due to the change in substrate-affinity. The closer the residue is located to the C-terminal end, the more its mutation affects not only MgATP(2-) but also AMP(2-) substrate binding. The hydrophobic alterations disrupt hydrophobic interactions with substrates and that might destabilize the conformation of the active site. The more C-terminal part of the alpha-helix appears to interact with AMP, as if it has swung out and rotated to cover the adenine moieties. The C-terminal alpha-helix of human adenylate kinase appears to be essential for the interaction with adenine substrates by swinging out during catalysis.  相似文献   

11.
The terminal electron acceptor of Photosystem II, PSII, is a linear complex consisting of a primary quinone, a non-heme iron(II), and a secondary quinone, Q(A)Fe(2+)Q(B). The complex is a sensitive site of PSII, where electron transfer is modulated by environmental factors and notably by bicarbonate. Earlier studies showed that NO and other small molecules (CN(-), F(-), carboxylate anions) bind reversibly on the non-heme iron in competition with bicarbonate. In the present study, we report on an unusual new mode of transient binding of NO, which is favored in the light-reduced state (Q(A)(-)Fe(2+)Q(B)) of the complex. The related observations are summarized as follows: (i) Incubation with NO at -30 degrees C, following light-induced charge separation, results in the evolution of a new EPR signal at g = 2.016. The signal correlates with the reduced state Q(A)(-)Fe(2+) of the iron-quinone complex. (ii) Cyanide, at low concentrations, converts the signal to a more rhombic form with g values at 2.027 (peak) and 1.976 (valley), while at high concentrations it inhibits formation of the signals. (iii) Electron spin-echo envelope modulation (ESEEM) experiments show the existence of two protein (14)N nuclei coupled to electron spin. These two nitrogens have been detected consistently in the environment of the semiquinone Q(A)(-) in a number of PSII preparations. (iv) NO does not directly contribute to the signals, as indicated by the absence of a detectable isotopic effect ((15)NO vs (14)NO) in cw EPR. (v) A third signal with g values (2.05, 2.03, 2.01) identical to those of an Fe(NO)(2)(imidazole) synthetic complex develops slowly in the dark, or faster following illumination. (vi) In comparison with the untreated Q(A)(-)Fe(2+) complex, the present signals not only are confined to a narrow spectral region but also saturate at low microwave power. At 11 K the g = 2.016 signal saturates with a P(1/2) of 110 microW and the g = 2.027/1.976 signal with a P(1/2) of 10 microW. (vii) The spectral shape and spin concentration of these signals is successfully reproduced, assuming a weak magnetic interaction (J values in the range 0.025-0.05 cm(-)(1)) between an iron-NO complex with total spin of (1)/(2) and the spin, (1)/(2), of the semiquinone, Q(A)(-). The different modes of binding of NO to the non-heme iron are examined in the context of a molecular model. An important aspect of the model is a trans influence of Q(A) reduction on the bicarbonate ligation to the iron, transmitted via H-bonding of Q(A) with an imidazole ligand to the iron.  相似文献   

12.
Elevated plasma concentrations of lipoprotein(a) [Lp(a)] are associated with an increased risk for the development of atherosclerotic disease which may be attributable to the ability of Lp(a) to attenuate fibrinolysis. A generally accepted mechanism for this effect involves direct competition of Lp(a) with plasminogen for fibrin(ogen) binding sites thus reducing the efficiency of plasminogen activation. Efforts to determine the domains of apolipoprotein(a) [apo(a)] which mediate fibrin(ogen) interactions have yielded conflicting results. Thus, the purpose of the present study was to determine the ability of single KIV domains of apo(a) to bind plasmin-treated fibrinogen surfaces as well to determine their effect on fibrinolysis using an in vitro clot lysis assay. A bacterial expression system was utilized to express and purify apo(a) KIV (2), KIV (7), KIV (9) DeltaCys (which lacks the seventh unpaired cysteine) and KIV (10) which contains a strong lysine binding site. We also expressed and examined three mutant derivatives of KIV (10) to determine the effect of changing critical residues in the lysine binding site of this kringle on both fibrin(ogen) binding and fibrin clot lysis. Our results demonstrate that the strong lysine binding site in apo(a) KIV (10) is capable of mediating interactions with plasmin-modified fibrinogen in a lysine-dependent manner, and that this kringle can increase in vitro fibrin clot lysis time by approximately 43% at a concentration of 10 microM KIV (10). The ability of the KIV (10) mutant derivatives to bind plasmin-modified fibrinogen correlated with their lysine binding capacity. Mutation of Trp (70) to Arg abolished binding to both lysine-Sepharose and plasmin-modified fibrinogen, while the Trp (70) -->Phe and Arg (35) -->Lys substitutions each resulted in decreased binding to these substrates. None of the KIV (10) mutant derivatives appeared to affect fibrinolysis. Apo(a) KIV (7) contains a lysine- and proline-sensitive site capable of mediating binding to plasmin-modified fibrinogen, albeit with a lower apparent affinity than apo(a) KIV (10). However, apo(a) KIV (7) had no effect on fibrinolysis in vitro. Apo(a) KIV (2) and KIV (9) DeltaCys did not bind measurably to plasmin-modified fibrinogen surfaces and did not affect fibrinolysis in vitro.  相似文献   

13.
Kantz A  Gassner GT 《Biochemistry》2011,50(4):523-532
Styrene monooxygenase (SMO) is a two-component flavoenzyme composed of an NADH-specific flavin reductase (SMOB) and FAD-specific styrene epoxidase (NSMOA). NSMOA binds tightly to reduced FAD and catalyzes the stereospecific addition of one atom of molecular oxygen to the vinyl side chain of styrene in the enantioselective synthesis of S-styrene oxide. In this mechanism, molecular oxygen first reacts with NSMOA(FAD(red)) to yield an FAD C(4a)-peroxide intermediate. This species is nonfluorescent and has an absorbance maximum of 382 nm. Styrene then reacts with the peroxide intermediate with a second-order rate constant of (2.6 ± 0.1) × 10(6) M(-1) s(-1) to yield a fluorescent intermediate with an absorbance maximum of 368 nm. We compute an activation free energy of 8.7 kcal/mol for the oxygenation step, in good agreement with that expected for a peroxide-catalyzed epoxidation, and acid-quenched samples recovered at defined time points in the single-turnover reaction indicate that styrene oxide synthesis is coincident with the formation phase of the fluorescent intermediate. These findings support FAD C(4a)-peroxide being the oxygen atom donor and the identity of the fluorescent intermediate as an FAD C(4a)-hydroxide product of the styrene epoxidation. Overall, four pH-dependent rate constants corresponding to peroxyflavin formation (pK(a) = 7.2), styrene epoxidation (pK(a) = 7.7), styrene oxide dissociation (pK(a) = 8.3), and hydroxyflavin dehydration (pK(a) = 7.6) are needed to fit the single-turnover kinetics.  相似文献   

14.
p-Hydroxyphenylacetate hydroxylase (HPAH) from Acinetobacter baumannii catalyzes the hydroxylation of p-hydroxyphenylacetate (HPA) to form 3,4-dihydroxyphenylacetate (DHPA). The enzyme system is composed of two proteins: an FMN reductase (C1) and an oxygenase that uses FMNH- (C2). We report detailed transient kinetics studies at 4 degrees C of the reaction mechanism of C2.C2 binds rapidly and tightly to reduced FMN (Kd, 1.2 +/- 0.2 microm), but less tightly to oxidized FMN (Kd, 250 +/- 50 microm). The complex of C -FMNH-2 reacted with oxygen to form C(4a)-hydroperoxy-FMN at 1.1 +/- 0.1 x 10(6) m(-1) s(-1), whereas the C -FMNH-2 -HPA complex reacted with oxygen to form C(4a)-hydroperoxy-FMN-HPA more slowly (k = 4.8 +/- 0.2 x 10(4) m(-1) s(-1)). The kinetic mechanism of C2 was shown to be a preferential random order type, in which HPA or oxygen can initially bind to the C -FMNH-2 complex, but the preferred path was oxygen reacting with C -FMNH-2 to form the C(4a)-hydroperoxy-FMN intermediate prior to HPA binding. Hydroxylation occurs from the ternary complex with a rate constant of 20 s(-1) to form the C2-C(4a)-hydroxy-FMN-DHPA complex. At high HPA concentrations (>0.5 mm), HPA formed a dead end complex with the C2-C(4a)-hydroxy-FMN intermediate (similar to single component flavoprotein hydroxylases), thus inhibiting the bound flavin from returning to the oxidized form. When FADH- was used, C(4a)-hydroperoxy-FAD, C(4a)-hydroxy-FAD, and product were formed at rates similar to those with FMNH-. Thus, C2 has the unusual ability to use both common flavin cofactors in catalysis.  相似文献   

15.
16.
The ability of several metals to inhibit dopamine beta-monooxygenase was measured and compared with their ability to compete with the binding of 64Cu to the water-soluble form of the bovine adrenal enzyme at pH 6.0. In the presence of an optimal concentration of copper (0.5 microM in the present assay system), an inhibition was observed upon addition of Hg(II), Zn(II), or Ni(II). Only a small fraction of the inhibition with these metals may be due to uncoupling of electron transport from hydroxylation. Preincubation of these metals with the Cu-depleted apoenzyme before addition of copper, revealed a stronger inhibition than if copper was added before the other metals. Hg(II), Zn(II), and Ni(II) also compete with the binding of 64Cu(II) to the protein. Hg(II) was the most effective and Ni(II) the least effective of these metals, both with respect to inhibition of the enzyme activity and to prevent the binding of 64Cu(II). Competition experiments on the binding of Zn(II) and 64Cu in the presence and absence of ascorbate, indicated i) a similar affinity of Cu(I) and Cu(II) to the native enzyme, and ii) a more rapid binding of Cu(I) than Cu(II) to the Cu-depleted and Zn-containing enzyme. Al(III), Fe(II), Mg(II), Mn(II), Co(II), Cd(II), and Pb(II) neither inhibited the enzyme activity nor competed with the binding of 64Cu(II) to the protein (Fe(II) was not tested for binding). Of those metals cited above only Cu(II)/Cu(I) was able to reactivate the apoenzyme.  相似文献   

17.
Several pure poly(I) preparations differed in: (a) their complement fixation reactivity with anti-poly(I) antiserum; (b) their ability to bind to a solid-phase anti-poly(I) antibody-Sepharose column; (c) their ability to inactivate serum complement; and (d) their reactivity with purified antibodies to double-stranded RNA. In particular, poly(I) samples that could induce interferon production differed from non-inducer poly(I)s; the inducers reacted weakly with anti-poly(I) antiserum and were the only ones that reacted with antibodies to double-stranded RNA. One inducer poly(I) did not inactivate complement, and differed from non-inducer poly(I) in quantitative aspects of poly(I) . poly(C) formation with varying amounts of poly(C). An additional type of poly(I) preparation reacted poorly with anti-poly(I) antiserum, did not react with anti-double-stranded-RNA antibodies and failed to induce interferon production. The varying forms of poly(I) were not interconvertible by boiling and rapid chilling. These results indicate that several different stable structural forms of poly(I) may result from a standardized synthetic procedure.  相似文献   

18.
Heme reduction of ferric lactoperoxidase (LPO) into its ferrous form initially leads to the accumulation of the unstable form of LPO-Fe(II), which spontaneously converts to a more stable species, the two of which can be identified by Soret peaks at 440 and 434 nm, respectively. Our data demonstrate that both LPO-Fe(II) species are capable of binding O(2) at a similar rate to generate the ferrous-dioxy complex. Its formation with respect to O(2) was first order and monophasic and with rate constants of k(on) = 3.8 x 10(4) m(-1) s(-1) and k(off) = 11.2 s(-1). The dissociation rate constant for the formation of LPO-Fe(II)-O(2) is relatively high, in contrast to hemoprotein model compounds. This high dissociation rate can be attributed to a combination of effects that include the positive trans effect of the proximal ligand, the heme pocket environment, and the geometry of the Fe-O(2) linkage. Our results have also shown that the decay of the LPO-Fe(II)-O(2) complex occurs by two sequential O(2)-independent steps. The first step involves formation of a short-lived intermediate that can be characterized by its Soret absorption peak at 416 nm and may be attributed to the weakening of the Fe(II)-O(2) linkage with a rate constant of 0.5 s(-1). The second step is spontaneous conversion of this intermediate to generate the native enzyme and presumably superoxide as end products with a rate constant of 0.03 s(-1). A comprehensive kinetic model that links LPO-Fe(II)-O(2) complex formation to the LPO catalase-like activity, combined with the classic catalytic cycle, is presented here.  相似文献   

19.
Sadoski RC  Engstrom G  Tian H  Zhang L  Yu CA  Yu L  Durham B  Millett F 《Biochemistry》2000,39(15):4231-4236
Electron transfer between the Rieske iron-sulfur protein (Fe(2)S(2)) and cytochrome c(1) was studied using the ruthenium dimer, Ru(2)D, to either photoreduce or photooxidize cytochrome c(1) within 1 micros. Ru(2)D has a charge of +4, which allows it to bind with high affinity to the cytochrome bc(1) complex. Flash photolysis of a solution containing beef cytochrome bc(1), Ru(2)D, and a sacrificial donor resulted in reduction of cytochrome c(1) within 1 micros, followed by electron transfer from cytochrome c(1) to Fe(2)S(2) with a rate constant of 90,000 s(-1). Flash photolysis of reduced beef bc(1), Ru(2)D, and a sacrificial acceptor resulted in oxidation of cytochrome c(1) within 1 micros, followed by electron transfer from Fe(2)S(2) to cytochrome c(1) with a rate constant of 16,000 s(-1). Oxidant-induced reduction of cytochrome b(H) was observed with a rate constant of 250 s(-1) in the presence of antimycin A. Electron transfer from Fe(2)S(2) to cytochrome c(1) within the Rhodobacter sphaeroides cyt bc(1) complex was found to have a rate constant of 60,000 s(-1) at 25 degrees C, while reduction of cytochrome b(H) occurred with a rate constant of 1000 s(-1). Double mutation of Ala-46 and Ala-48 in the neck region of the Rieske protein to prolines resulted in a decrease in the rate constants for both cyt c(1) and cyt b(H) reduction to 25 s(-1), indicating that a conformational change in the Rieske protein has become rate-limiting.  相似文献   

20.
(±)-2-Fluoro-2-(2-methyl-4-(((4-methyl-2-(4-(trifluoromethyl)phenyl)thiazol-5-yl)methyl)thio)phenoxy)acetic acid (2a) has been prepared and subjected to biological testing against all three subtypes of the PPARs. This compound exhibited agonist effects with EC(50) values of 560 and 55 nM against PPARα and PPARδ, respectively, in a luciferase assay. Moreover, compound (±)-2a also exhibited potent ability to induce oleic acid oxidation in a human myotube cell assay with EC(50)=3.7 nM. Compound (±)-2a can be classified as a dual PPARα/δ agonist with a 10-fold higher potency against the PPARδ receptor than against the PPARα receptor. Molecular modeling studies revealed that both enantiomers of 2a bind to the PPARδ receptor with similar binding energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号