首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative trait loci (QTL) mapping for bean traits and the number of ovules per ovary was carried out in cocoa (Theobroma cacao L.) using three test-cross progenies derived from crosses between a lower Amazon Forastero male parent (Catongo) and three female parents: one upper Amazon Forastero (IMC78) and two Trinitario (DR1 and S52). RFLP (restriction fragment length polymorphism), microsatellite, and AFLP (amplified fragment lengthpolymorphism) markers were used for mapping. Between one and six QTL for bean traits (length, weight, and shape index) and one and four QTL for the number of ovules per ovary were detected using composite interval mapping (CIM). Individual QTL explained between 5 and 24% of the phenotypic variation. QTL clusters were identified on several chromosomes, but particularly on chromosome 4. QTL related to bean traits were detected in the same region in both Trinitario parents and in a close region in the upper Amazon Forastero parent. In reference to a previous diversity study where alleles specific to Criollo and Forastero genotypes were identified, it was possible to speculate on the putative origin (Criollo or Forastero) of favorable QTL alleles segregating in both Trinitario studied.  相似文献   

2.
Sillanpää MJ  Arjas E 《Genetics》1999,151(4):1605-1619
A general fine-scale Bayesian quantitative trait locus (QTL) mapping method for outcrossing species is presented. It is suitable for an analysis of complete and incomplete data from experimental designs of F2 families or backcrosses. The amount of genotyping of parents and grandparents is optional, as well as the assumption that the QTL alleles in the crossed lines are fixed. Grandparental origin indicators are used, but without forgetting the original genotype or allelic origin information. The method treats the number of QTL in the analyzed chromosome as a random variable and allows some QTL effects from other chromosomes to be taken into account in a composite interval mapping manner. A block-update of ordered genotypes (haplotypes) of the whole family is sampled once in each marker locus during every round of the Markov Chain Monte Carlo algorithm used in the numerical estimation. As a byproduct, the method gives the posterior distributions for linkage phases in the family and therefore it can also be used as a haplotyping algorithm. The Bayesian method is tested and compared with two frequentist methods using simulated data sets, considering two different parental crosses and three different levels of available parental information. The method is implemented as a software package and is freely available under the name Multimapper/outbred at URL http://www.rni.helsinki.fi/mjs/.  相似文献   

3.
R. C. Jansen  P. Stam 《Genetics》1994,136(4):1447-1455
A very general method is described for multiple linear regression of a quantitative phenotype on genotype [putative quantitative trait loci (QTLs) and markers] in segregating generations obtained from line crosses. The method exploits two features, (a) the use of additional parental and F(1) data, which fixes the joint QTL effects and the environmental error, and (b) the use of markers as cofactors, which reduces the genetic background noise. As a result, a significant increase of QTL detection power is achieved in comparison with conventional QTL mapping. The core of the method is the completion of any missing genotypic (QTL and marker) observations, which is embedded in a general and simple expectation maximization (EM) algorithm to obtain maximum likelihood estimates of the model parameters. The method is described in detail for the analysis of an F(2) generation. Because of the generality of the approach, it is easily applicable to other generations, such as backcross progenies and recombinant inbred lines. An example is presented in which multiple QTLs for plant height in tomato are mapped in an F(2) progeny, using additional data from the parents and their F(1) progeny.  相似文献   

4.
Genetic analysis of rice CMS-WA fertility restoration based on QTL mapping   总被引:36,自引:0,他引:36  
 The inheritance of fertility restoration of rice cytoplasmic male sterility of the wild abortive type was studied by means of QTL mapping. The two segregating populations examined showed high frequencies of highly sterile and highly fertile progenies, but a low frequency of partially sterile and partially fertile progenies. The distributions suggested that fertility restoration was mainly controlled by major genes. Based on a linkage map constructed with 57 RFLP and 61 AFLP markers on a B1F1 population, composite interval mapping (CIM) revealed that the fertility was restored by the additive effects of two restorer loci located on chromosome 10. One QTL, tightly linked to RFLP marker C1361 in the middle of the long arm of chromosome 10, explained 71.5% of the phenotypic variance. The second QTL was located between RFLP markers R2309 and RG257 on the short arm and explained 27.3% of the phenotypic variance. Similar results were obtained using the simple interval mapping (SIM) methods. Recived: 8 January 1998/Accepted: 22 April 1998  相似文献   

5.
Quantitative trait loci (QTL) affecting fatness in male chickens were previously identified on chromosome 5 (GGA5) in a three-generation design derived from two experimental chicken lines divergently selected for abdominal fat weight. A new design, established from the same pure lines, produced 407 F2 progenies (males and females) from 4 F1-sire families. Body weight and abdominal fat were measured on the F2 at 9 wk of age. In each sire family, selective genotyping was carried out for 48 extreme individuals for abdominal fat using seven microsatellite markers from GGA5. QTL analyses confirmed the presence of QTL for fatness on GGA5 and identified a QTL by sex interaction. By crossing one F1 sire heterozygous at the QTL with lean line dams, three recombinant backcross 1 (BC1) males were produced and their QTL genotypes were assessed in backcross 2 (BC2) progenies. These results confirmed the QTL by sex interaction identified in the F2 generation and they allow mapping of the female QTL to less than 8 Mb at the distal part of the GGA5. They also indicate that fat QTL alleles were segregating in both fat and lean lines.  相似文献   

6.
Mapping of quantitative trait loci (QTL) was used to investigate the genetic architecture of divergence in floral characters associated with the mating system, an important adaptive trait in angiosperms. Two species of Leptosiphon (Polemoniaceae), one strongly self-fertilizing (L. bicolor) and the other partially outcrossing (L. jepsonii), were crossed to produce F2 and both backcross progenies. For each crossing population, a linkage map was created using amplified fragment length polymorphism markers, and QTL were identified for several dimensions of floral size. For each of the five traits examined, three to seven QTL were detected, with independent datasets yielding congruent results in some but not all cases. The phenotypic effect of individual QTL was generally moderate. We estimated that many of the QTL were additive or showed dominance toward L. bicolor, whereas comparison of mean trait values for parental and cross progenies showed apparent overall dominance of L. jepsonii traits. Colocalization of QTL for different dimensions of floral size was consistent with high phenotypic correlations between floral traits. Substantial segregation distortion was observed in marker loci, the majority favoring alleles from the large-flowered parent. A low frequency of male sterility in the F2 population is consistent with the Dobzhansky-Muller model for the evolution of reproductive isolation.  相似文献   

7.
Linkage analysis, Kruskal–Wallis analysis, interval mapping and graphical genotyping were performed on a potato diploid backcross family comprising 120 clones segregating for resistance to late blight. A hybrid between the Solanum tuberosum dihaploid clone PDH247 and the long-day-adapted S. phureja clone DB226(70) had been crossed to DB226(70) to produce the backcross family. Eighteen AFLP primer combinations provided 186 and 123 informative maternal and paternal markers respectively, with 63 markers in common to both parents. Eleven microsatellite (SSR) markers proved useful for identifying chromosomes. Linkage maps of both backcross parents were constructed. The results of a Kruskal–Wallis analysis, interval mapping and graphical genotyping were all consistent with a QTL or QTLs for blight resistance between two AFLP markers 30 cM apart on chromosome 4, which was identified by a microsatellite marker. The simplest explanation of the results is a single QTL with an allele from the dihaploid parent conferring resistance to race 1, 4 of P. infestans in the foliage in the glasshouse and to race 1, 2, 3, 4, 6, 7 in the foliage in the field and in tubers from glasshouse raised plants. The QTL was of large effect, and explained 78 and 51% of the variation in phenotypic scores for foliage blight in the glasshouse and field respectively, as well as 27% of the variation in tuber blight. Graphical genotyping and the differences in blight scores between the parental clones showed that all of the foliage blight resistance is accounted for by chromosome 4, whereas undetected QTLs for tuber resistance probably exist on other chromosomes. Graphical genotyping also explained the lack of precision in mapping the QTL(s) in terms of lack of appropriate recombinant chromosomes.  相似文献   

8.
In the quest for fine mapping quantitative trait loci (QTL) at a subcentimorgan scale, several methods that involve the construction of inbred lines and the generation of large progenies of such inbred lines have been developed (Complex Trait Consortium 2003). Here we present an alternative method that significantly speeds up QTL fine mapping by using one segregating population. As a first step, a rough mapping analysis is performed on a small part of the population. Once the QTL have been mapped to a chromosomal interval by standard procedures, a large population of 1000 plants or more is analyzed with markers flanking the defined QTL to select QTL isogenic recombinants (QIRs). QIRs bear a recombination event in the QTL interval of interest, while other QTL have the same homozygous genotype. Only these QIRs are subsequently phenotyped to fine map the QTL. By focusing at an early stage on the informative individuals in the population only, the efforts in population genotyping and phenotyping are significantly reduced as compared to prior methods. The principles of this approach are demonstrated by fine mapping an erucic acid QTL of rapeseed at a subcentimorgan scale.  相似文献   

9.
A major QTL for P uptake had previously been mapped to a 13-cM marker interval on the long arm of chromosome 12. To map that major QTL with higher precision and certainty, a secondary mapping population was developed by backcrossing a near-isogenic line containing the QTL from the donor parent to the recurrent parent of low P uptake. Two different mapping strategies have been followed in this study. A conventional QTL mapping approach was based on individual F(2) RFLP data and the phenotypic evaluation of family means in the F(3). The second strategy employed a substitution-mapping approach. Phenotypic and marker data were obtained for 160 F(3) individuals of six highly informative families that differed in the size of donor chromosomal segments in the region of the putative QTL. QTL mapping showed that close to 80% of the variation between families was due to a single QTL, hereafter referred to as Pup1 (Phosphorus uptake 1). Pup1 was placed in a 3-cM interval flanked by markers S14025 and S13126, which is within 1 cM of the position identified in the original QTL mapping experiment. Other chromosomal regions and epistatic effects were not significant. Substitution mapping revealed that Pup1 co-segregated with marker S13126 and that the flanking markers, S14025 and S13752, were outside the interval containing Pup1. The two mapping strategies therefore yielded almost identical results and, in combining the advantages of both, Pup1 could be mapped with high certainty. The QTL mapping appoach showed that the phenotypic variation between families was due to only one QTL without any additional epistacic interactions, whereas the advantage of substitution mapping was to place clearly defined borders around the QTL.  相似文献   

10.
Genetic linkage maps for two apricot cultivars have been constructed using AFLP, RAPD, RFLP and SSR markers in 81 F1 individuals from the cross 'Goldrich' x 'Valenciano'. This family segregated for resistance to 'plum pox virus' (PPV), the most-important virus affecting Prunus species. Of the 160 RAPD arbitrary primers screened a total of 44 were selected. Sixty one polymorphic RAPD markers were scored on the mapping population: 30 heterozygous in 'Goldrich', 19 heterozygous in 'Valenciano', segregating 1:1, and 12 markers heterozygous in both parents, segregating 3:1. A total of 33 and 19 RAPD markers were mapped on the 'Goldrich' and 'Valenciano' maps respectively. Forteen primer combinations were used for AFLPs and all of them detected polymorphism. Ninety five markers segregating 1:1 were identified, of which 62 were heterozygous in the female parent 'Goldrich' and 33 in the male parent 'Valenciano'. Forty five markers were present in both parents and segregated 3:1. A total of 82 and 48 AFLP markers were mapped on the 'Goldrich' and 'Valenciano' maps. Twelve RFLPs probes were screened in the population, resulting in five loci segregating in the family, one locus heterozygous for 'Valenciano' and four heterozygous for both, segregating 1:2:1. Of the 45 SSRs screened 17 segregated in the mapping family, resulting in seven loci heterozygous for the maternal parent and ten heterozygous for both, segregating 1:2:1 or 1:1:1:1. A total of 16 and 13 co-dominant markers were mapped in the female and male parent maps respectively. A total of 132 markers were placed into eight linkage groups on the 'Goldrich' map, defining 511 cM of the total map-length. The average distance between adjacent markers was 3.9 cM. A total of 80 markers were placed into seven linkage groups on the 'Valenciano' map, defining 467.2 cM of the total map-distance, with an average interval of 5.8 cM between adjacent markers. Thirty six marker loci heterozygous in both parents revealed straightforward homologies between five linkage groups in both maps. The sharka resistance trait mapped on linkage group 2. The region containing sharka resistance is flanked by two co-dominant markers that will be used for targeted SSR development employing a recently constructed complete apricot BAC library. SSRs tightly linked to sharka resistance will facilitate MAS in breeding for resistance in apricot.  相似文献   

11.
The informativeness and inheritance of randomly amplified polymorphic DNA (RAPD) markers were investigated in an intraspecific F1 progeny derived from two heterozygous parents. The analysis confirmed the utility of RAPD markers for comparing candidate parents for the development of a molecular genetic map, and provided numerous markers for linkage analysis in a crop with a very limited history of classical or molecular genetic studies. Six potential parental lines (themselves F1 hybrid clones) showed between 1.82 and 0.62 segregating bands per primer in three hybrid families. Forty-three percent (309) of 722 primers produced polymorphic products in the most informative of these three crosses, revealing 328 single-dose (SD) markers segregating 1:1 for presence/absence in a progeny of 90 individuals. A second class of informative markers were those present in both parents but segregating in the progeny. Fifty-seven or 67% of the monomorphic but segregating markers exhibited the 3:1 ratio expected for SD dominant markers in a cross between heterozygotes. Linkage groups were constructed from the segregation of SD RAPD markers originating in the female (TMS 30572) and the male (CM2177-2) parent. Key words : RAPDs, molecular markers, genetic segregation, Manihot, single-dose markers.  相似文献   

12.
A genetic linkage map of grape was constructed, utilizing 116 progeny derived from a cross of two Vitis rupestris x V. arizonica interspecific hybrids, using the pseudo-testcross strategy. A total of 475 DNA markers-410 amplified fragment length polymorphism, 24 inter-simple sequence repeat, 32 random amplified polymorphic DNA, and nine simple sequence repeat markers-were used to construct the parental maps. Markers segregating 1:1 were used to construct parental framework maps with confidence levels >90% with the Plant Genome Research Initiative mapping program. In the maternal (D8909-15) map, 105 framework markers and 55 accessory markers were ordered in 17 linkage groups (756 cM). The paternal (F8909-17) map had 111 framework markers and 33 accessory markers ordered in 19 linkage groups (1,082 cM). One hundred eighty-one markers segregating 3:1 were used to connect the two parental maps' parents. This moderately dense map will be useful for the initial mapping of genes and/or QTL for resistance to the dagger nematode, Xiphinema index, and Xylella fastidiosa, the bacterial causal agent of Pierce's disease.  相似文献   

13.
Interval Mapping of Multiple Quantitative Trait Loci   总被引:60,自引:7,他引:53       下载免费PDF全文
R. C. Jansen 《Genetics》1993,135(1):205-211
The interval mapping method is widely used for the mapping of quantitative trait loci (QTLs) in segregating generations derived from crosses between inbred lines. The efficiency of detecting and the accuracy of mapping multiple QTLs by using genetic markers are much increased by employing multiple QTL models instead of the single QTL models (and no QTL models) used in interval mapping. However, the computational work involved with multiple QTL models is considerable when the number of QTLs is large. In this paper it is proposed to combine multiple linear regression methods with conventional interval mapping. This is achieved by fitting one QTL at a time in a given interval and simultaneously using (part of) the markers as cofactors to eliminate the effects of additional QTLs. It is shown that the proposed method combines the easy computation of the single QTL interval mapping method with much of the efficiency and accuracy of multiple QTL models.  相似文献   

14.
Sheep internal parasites (nematodes) remain a major health challenge and are costly for pasture-based production systems. Most current breeding programmes for nematode resistance are based on indicator traits such as faecal egg counts (FEC), which are costly and laborious to collect. Hence, genetic markers for resistance would be advantageous. However, although some quantitative trait loci (QTL) have been identified, these QTL are often not consistent across breeds and few breeding strategies for nematode resistance in sheep are currently using molecular information. In this study, QTL for nematode resistance on ovine chromosomes (OAR) 3 and 14, previously identified in the Blackface breed, were explored using commercial Suffolk (n = 336) and Texel lambs (n = 879) sampled from terminal sire breeder flocks in the United Kingdom. FEC were used as the indicator trait for nematode resistance, and these were counted separately for Nematodirus and Strongyles genera. Microsatellite markers were used to map the QTL and the data were analysed using interval mapping regression techniques and variance component analysis. QTL for Nematodirus and Strongyles FEC were found to be segregating on OAR3 at 5% chromosome region-wide significance threshold in both Suffolk and Texel sheep, and Nematodirus FEC QTL were segregating on OAR14 in both breeds. In addition, QTL for growth traits were also found to be segregating at 5% chromosome region-wide on OAR3 and OAR14. The confirmation that FEC QTL segregate in the same position in three widely used breeds widens their potential applicability to purebred Blackface, Suffolk and Texel sheep, with benefits likely to be observed in their commercial crossbred progeny.  相似文献   

15.
Nested Association Mapping (NAM) has been proposed as a means to combine the power of linkage mapping with the resolution of association mapping. It is enabled through sequencing or array genotyping of parental inbred lines while using low-cost, low-density genotyping technologies for their segregating progenies. For purposes of data analyses of NAM populations, parental genotypes at a large number of Single Nucleotide Polymorphic (SNP) loci need to be projected to their segregating progeny. Herein we demonstrate how approximately 0.5 million SNPs that have been genotyped in 26 parental lines of the publicly available maize NAM population can be projected onto their segregating progeny using only 1,106 SNP loci that have been genotyped in both the parents and their 5,000 progeny. The challenge is to estimate both the genotype and genetic location of the parental SNP genotypes in segregating progeny. Both challenges were met by estimating their expected genotypic values conditional on observed flanking markers through the use of both physical and linkage maps. About 90%, of 500,000 genotyped SNPs from the maize HapMap project, were assigned linkage map positions using linear interpolation between the maize Accessioned Gold Path (AGP) and NAM linkage maps. Of these, almost 70% provided high probability estimates of genotypes in almost 5,000 recombinant inbred lines.  相似文献   

16.
In this study, we considered five categories of molecular markers in clonal F1 and double cross populations, based on the number of distinguishable alleles and the number of distinguishable genotypes at the marker locus. Using the completed linkage maps, incomplete and missing markers were imputed as fully informative markers in order to simplify the linkage mapping approaches of quantitative trait genes. Under the condition of fully informative markers, we demonstrated that dominance effect between the female and male parents in clonal F1 and double cross populations can cause the interactions between markers. We then developed an inclusive linear model that includes marker variables and marker interactions so as to completely control additive effects of the female and male parents, as well as the dominance effect between the female and male parents. The linear model was finally used for background control in inclusive composite interval mapping (ICIM) of quantitative trait locus (QTL). The efficiency of ICIM was demonstrated by extensive simulations and by comparisons with simple interval mapping, multiple‐QTL models and composite interval mapping. Finally, ICIM was applied in one actual double cross population to identify QTL on days to silking in maize.  相似文献   

17.
18.
A recent genetic linkage map was employed to detect quantitative trait loci (QTLs) associated with Vibrio anguillarum resistance in Japanese flounder. An F1 family established and challenged with V. anguillarum in 2009 was used for QTL mapping. Of the 221 simple sequence repeat (SSR) markers used to detect polymorphisms in the parents of F1, 170 were confirmed to be polymorphic. The average distance between the markers was 10.6 cM. Equal amounts of genomic DNA from 15 fry that died early and from 15 survivors were pooled separately to constitute susceptible bulk and resistance bulk DNA. Bulked segregant analysis and QTL mapping were combined to detect candidate SSR markers and regions associated with the disease. A genome scan identified four polymorphic SSR markers, two of which were significantly different between susceptible and resistance bulk (P?=?0.008). These two markers were located in linkage group (LG) 7; therefore, all the SSR markers in LG7 were genotyped in all the challenged fry by single marker analysis. Using two different models, 11–17 SSR markers were detected with different levels of significance. To confirm the associations of these markers with the disease, composite interval mapping was employed to genotype all the challenged individuals. One and three QTLs, which explained more than 60 % of the phenotypic variance, were detected by the two models. Two of the QTLs were located at 48.6 cM. The common QTL may therefore be a major candidate region for disease resistance against V. anguillarum infection.  相似文献   

19.
Bosio CF  Fulton RE  Salasek ML  Beaty BJ  Black WC 《Genetics》2000,156(2):687-698
Quantitative trait loci (QTL) affecting the ability of the mosquito Aedes aegypti to become infected with dengue-2 virus were mapped in an F(1) intercross. Dengue-susceptible A. aegypti aegypti were crossed with dengue refractory A. aegypti formosus. F(2) offspring were analyzed for midgut infection and escape barriers. In P(1) and F(1) parents and in 207 F(2) individuals, regions of 14 cDNA loci were analyzed with single-strand conformation polymorphism analysis to identify and orient linkage groups with respect to chromosomes I-III. Genotypes were also scored at 57 RAPD-SSCP loci, 5 (TAG)(n) microsatellite loci, and 6 sequence-tagged RAPD loci. Dengue infection phenotypes were scored in 86 F(2) females. Two QTL for a midgut infection barrier were detected with standard and composite interval mapping on chromosomes II and III that accounted for approximately 30% of the phenotypic variance (sigma(2)(p)) in dengue infection and these accounted for 44 and 56%, respectively, of the overall genetic variance (sigma(2)(g)). QTL of minor effect were detected on chromosomes I and III, but these were not detected with composite interval mapping. Evidence for a QTL for midgut escape barrier was detected with standard interval mapping but not with composite interval mapping on chromosome III.  相似文献   

20.
A reciprocal chromosomal transposition was identified in several annual oilseed Brassica napus genotypes used as parents in crosses to biennial genotypes for genetic mapping studies. The transposition involved an exchange of interstitial homeologous regions on linkage groups N7 and N16, and its detection was made possible by the use of segregating populations of doubled haploid lines and codominant RFLP markers. RFLP probes detected pairs of homeologous loci on N7 and N16 for which the annual and biennial parents had identical alleles in regions expected to be homeologous. The existence of an interstitial reciprocal transposition was confirmed by cytological analysis of synaptonemal complexes of annual x biennial F1 hybrids. Although it included approximately one-third of the physical length of the N7 and N16 chromosomes, few recombination events within the region were recovered in the progenies of the hybrids. Significantly higher seed yields were associated with the parental configurations of the rearrangement in segregating progenies. These progenies contained complete complements of homeologous chromosomes from the diploid progenitors of B. napus, and thus their higher seed yields provide evidence for the selective advantage of allopolyploidy through the fixation of intergenomic heterozygosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号