首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agriculture depends heavily on biologically fixed nitrogen from the symbiotic association between rhizobia and plants. Molecular nitrogen is fixed by differentiated forms of rhizobia in nodules located on plant roots. The phytohormone, ethylene, acts as a negative factor in the nodulation process. Recent discoveries suggest several strategies used by rhizobia to reduce the amount of ethylene synthesized by their legume symbionts, decreasing the negative effect of ethylene on nodulation. At least one strain of rhizobia produces rhizobitoxine, an inhibitor of ethylene synthesis. Active 1-aminocyclopropane-1-carboxylate (ACC) deaminase has been detected in a number of other rhizobial strains. This enzyme catalyzes the cleavage of ACC to alpha-ketobutyrate and ammonia. It has been shown that the inhibitory effect of ethylene on plant root elongation can be reduced by the activity of ACC deaminase.  相似文献   

2.
Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. Through the action of this enzyme, ACC deaminase-containing bacteria can reduce ethylene biosynthesis in plants. Insertion mutants with mutations in the rhizobial ACC deaminase gene (acdS) and its regulatory gene, a leucine-responsive regulatory protein-like gene (lrpL), were constructed and tested to determine their abilities to nodulate Pisum sativum L. cv. Sparkle (pea). Both mutants, neither of which synthesized ACC deaminase, showed decreased nodulation efficiency compared to that of the parental strain. Our results suggest that ACC deaminase in R. leguminosarum bv. viciae 128C53K enhances the nodulation of P. sativum L. cv. Sparkle, likely by modulating ethylene levels in the plant roots during the early stages of nodule development. ACC deaminase might be the second described strategy utilized by Rhizobium to promote nodulation by adjusting ethylene levels in legumes.  相似文献   

3.
Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. Through the action of this enzyme, ACC deaminase-containing bacteria can reduce ethylene biosynthesis in plants. Insertion mutants with mutations in the rhizobial ACC deaminase gene (acdS) and its regulatory gene, a leucine-responsive regulatory protein-like gene (lrpL), were constructed and tested to determine their abilities to nodulate Pisum sativum L. cv. Sparkle (pea). Both mutants, neither of which synthesized ACC deaminase, showed decreased nodulation efficiency compared to that of the parental strain. Our results suggest that ACC deaminase in R. leguminosarum bv. viciae 128C53K enhances the nodulation of P. sativum L. cv. Sparkle, likely by modulating ethylene levels in the plant roots during the early stages of nodule development. ACC deaminase might be the second described strategy utilized by Rhizobium to promote nodulation by adjusting ethylene levels in legumes.  相似文献   

4.
Ethylene inhibits the establishment of symbiosis between rhizobia and legumes. Several rhizobia species express the enzyme ACC deaminase, which degrades the ethylene precursor 1-cyclopropane-1-carboxilate (ACC), leading to reductions in the amount of ethylene evolved by the plant. M. loti has a gene encoding ACC deaminase, but this gene is under the activity of the NifA-RpoN-dependent promoter; thus, it is only expressed inside the nodule. The M. loti structural gene ACC deaminase (acdS) was integrated into the M. loti chromosome under a constitutive promoter activity. The resulting strain induced the formation of a higher number of nodules and was more competitive than the wild-type strain on Lotus japonicus and L. tenuis. These results suggest that the introduction of the ACC deaminase activity within M. loti in a constitutive way could be a novel strategy to increase nodulation competitiveness of the bacteria, which could be useful for the forage inoculants industry.  相似文献   

5.
In the symbiotic interaction with rhizobia, legumes develop nodules in which nitrogen fixation takes place. Upon submersion, most temperate legumes are incapable of nodulation, but tropical legumes that grow in waterlogged soils have acquired water stress tolerance for growth and nodulation. One well-studied model plant, the tropical, semi-aquatic Sesbania rostrata, develops stem-located adventitious root primordia that grow out into adventitious roots upon submergence and develop into stem nodules after inoculation with the microsymbiont, Azorhizobium caulinodans. Sesbania rostrata also has a nodulated underground root system. On well-aerated roots, nodules form via root hair curling infection in the zone, just above the root tip, where root hairs develop; on hydroponic roots, an alternative process is used, recruiting a cortical intercellular invasion program at the lateral root bases that skips the epidermal responses. This intercellular cortical invasion entails infection pocket formation, a process that involves cell death features and reactive oxygen species. The plant hormones ethylene and gibberellin are the major signals that act downstream from the bacterial nodulation factors in the nodulation and invasion program. Both hormones block root hair curling infection, but cooperate to stimulate lateral root base invasion and play a role in infection thread formation, meristem establishment, and differentiation of meristem descendants.  相似文献   

6.
Root-nodule development in legumes is an inducible developmental process initially triggered by perception of lipochitin-oligosaccharide signals secreted by the bacterial microsymbiont. In nature, rhizobial colonization and invasion of the legume root is therefore a prerequisite for formation of nitrogen-fixing root nodules. Here, we report isolation and characterization of chemically induced spontaneously nodulating mutants in a model legume amenable to molecular genetics. Six mutant lines of Lotus japonicus were identified in a screen for spontaneous nodule development under axenic conditions, i.e., in the absence of rhizobia. Spontaneous nodules do not contain rhizobia, bacteroids, or infection threads. Phenotypically, they resemble ineffective white nodules formed by some bacterial mutants on wild-type plants or certain plant mutants inoculated with wild-type Mesorhizobium loti. Spontaneous nodules formed on mutant lines show the ontogeny and characteristic histological features described for rhizobia-induced nodules on wild-type plants. Physiological responses to nitrate and ethylene are also maintained, as elevated levels inhibit spontaneous nodulation. Activation of the nodule developmental program in spontaneous nodules was shown for the early nodulin genes Enod2 and Nin, which are both upregulated in spontaneous nodules as well as in rhizobial nodules. Both monogenic recessive and dominant spontaneous nodule formation (snf) mutations were isolated in this mutant screen, and map positions were determined for three loci. We suggest that future molecular characterization of these mutants will identify key plant determinants involved in regulating nodulation and provide new insight into plant organ development.  相似文献   

7.
The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase converts ACC, a precursor of the plant hormone ethylene, into ammonia and ??-ketobutyrate. ACC deaminase is widespread among the rhizobia in which it might play a crucial role in protecting rhizobia against inhibitory effects of ethylene synthesized by the host plant in response to the nodulation process. The beneficial action of this enzyme was demonstrated in several rhizobia such as Mesorhizobium loti and Rhizobium leguminosarum where knock-out mutants of the ACC deaminase gene showed nodulation defects. The genome of the slow-growing rhizobial species Bradyrhizobium japonicum also carries an annotated gene for a putative ACC deaminase (blr0241). Here, we tested the possible importance of this enzyme in B. japonicum by constructing an insertion mutant of blr0241 and studying its phenotype. First, the activity of ACC deaminase itself was measured. Unlike the B. japonicum wild type, the blr0241 mutant did not show any enzymatic activity. By contrast, the mutant was not impaired in its ability to nodulate soybean, cowpea, siratro, and mungbean. Likewise, symbiotic nitrogen fixation activity remained unaffected. Furthermore, a co-inoculation assay with the B. japonicum wild type and the blr0241 mutant for soybean and siratro nodulation revealed that the mutant was not affected in its competitiveness for nodulation and nodule occupation. The results show that the role previously ascribed to ACC deaminase in the rhizobia cannot be generalized, and species-specific differences may exist.  相似文献   

8.
Ethylene has been hypothesised to be a regulator of root nodule development in legumes, but its molecular mechanisms of action remain unclear. The skl mutant is an ethylene-insensitive legume mutant showing a hypernodulation phenotype when inoculated with its symbiont Sinorhizobium meliloti. We used the skl mutant to study the ethylene-mediated protein changes during nodule development in Medicago truncatula. We compared the root proteome of the skl mutant to its wild-type in response to the ethylene precursor aminocyclopropane carboxylic acid (ACC) to study ethylene-mediated protein expression in root tissues. We then compared the proteome of skl roots to its wild-type after Sinorhizobium inoculation to identify differentially displayed proteins during nodule development at 1 and 3 days post inoculation (dpi). Six proteins (pprg-2, Kunitz proteinase inhibitor, and ACC oxidase isoforms) were down-regulated in skl roots, while three protein spots were up-regulated (trypsin inhibitor, albumin 2, and CPRD49). ACC induced stress-related proteins in wild-type roots, such as pprg-2, ACC oxidase, proteinase inhibitor, ascorbate peroxidase, and heat-shock proteins. However, the expression of stress-related proteins such as pprg-2, Kunitz proteinase inhibitor, and ACC oxidase, was down-regulated in inoculated skl roots. We hypothesize that during early nodule development, the plant induces ethylene-mediated stress responses to limit nodule numbers. When a mutant defective in ethylene signaling, such as skl, is inoculated with rhizobia, the plant stress response is reduced, resulting in increased nodule numbers.  相似文献   

9.
Bacteria producing 1-aminocyclopropane-1-carboxylate (ACC) deaminase modulate plant ethylene levels. Decreased ethylene levels increase plant tolerance to environmental stresses and promote legume nodulation. On the contrary, the role of ethylene in mycorrhizal symbiosis establishment is still controversial. In this work, the ACC deaminase-producing strain Pseudomonas putida UW4 AcdS+ and its mutant AcdS(-), impaired in ACC deaminase synthesis, were inoculated alone or in combination with the AM fungus Gigaspora rosea on cucumber. Mycorrhizal and bacterial colonization as well as plant growth and morphometric parameters were measured. The influence of each microorganism on the photosynthetic efficiency was evaluated on the second and fourth leaf. The strain AcdS+, but not the AcdS(-) mutant, increased AM colonization and arbuscule abundance. The mycorrhizal fungus, but not the bacterial strains, promoted plant growth. However, the AcdS+ strain, inoculated with G. rosea, induced synergistic effects on plant biomass, total root length and total leaf projected area. Finally, the photosynthetic performance index was increased by the strain UW4 AcdS+ inoculated in combination with G. rosea BEG9. These results suggest a key role of this enzyme in the establishment and development of AM symbiosis.  相似文献   

10.
The symbiotic relationships between legumes and their nitrogen (N(2))-fixing bacterial partners (rhizobia) vary in effectiveness to promote plant growth according to both bacterial and legume genotype. To assess the selective effect of host plant on its microsymbionts, the influence of the pea (Pisum sativum) genotype on the relative nodulation success of Rhizobium leguminosarum biovar viciae (Rlv) genotypes from the soil populations during plant development has been investigated. Five pea lines were chosen for their genetic variability in root and nodule development. Genetic structure and diversity of Rlv populations sampled from nodules were estimated by molecular typing with a marker of the genomic background (rDNA intergenic spacer) and a nodulation gene marker (nodD region). Differences were found among Rlv populations related to pea genetic background but also to modification of plant development caused by single gene mutation. The growth stage of the host plant also influenced structuring of populations. A particular nodulation genotype formed the majority of nodules during the reproductive stage. Overall, modification in root and nodule development appears to strongly influence the capacity of particular rhizobial genotypes to form nodules.  相似文献   

11.
12.
The specific interaction between rhizobia and legume roots leads to the development of a highly regulated process called nodulation, by which the atmospheric nitrogen is converted into an assimilable plant nutrient. This capacity is the basis for the use of bacterial inoculants for field crop cultivation. Legume plants have acquired tools that allow the entry of compatible bacteria. Likewise, plants can impose sanctions against the maintenance of nodules occupied by rhizobia with low nitrogen-fixing capacity. At the same time, bacteria must overcome different obstacles posed first by the environment and then by the legume. The present review describes the mechanisms involved in the regulation of the entire legume–rhizobium symbiotic process and the strategies and tools of bacteria for reaching the nitrogen-fixing state inside the nodule. Also, we revised different approaches to improve the nodulation process for a better crop yield.  相似文献   

13.
Mutualistic symbiosis and nitrogen fixation of legume rhizobia play a key role in ecological environments. Although many different rhizobial species can form nodules with a specific legume, there is often a dominant microsymbiont, which has the highest nodule occupancy rates, and they are often known as the “most favorable rhizobia”. Shifts in the most favorable rhizobia for a legume in different geographical regions or soil types are not well understood. Therefore, in order to explore the shift model, an experiment was designed using successive inoculations of rhizobia on one legume. The plants were grown in either sterile vermiculite or a sandy soil. Results showed that, depending on the environment, a legume could select its preferential rhizobial partner in order to establish symbiosis. For perennial legumes, nodulation is a continuous and sequential process. In this study, when the most favorable rhizobial strain was available to infect the plant first, it was dominant in the nodules, regardless of the existence of other rhizobial strains in the rhizosphere. Other rhizobial strains had an opportunity to establish symbiosis with the plant when the most favorable rhizobial strain was not present in the rhizosphere. Nodule occupancy rates of the most favorable rhizobial strain depended on the competitiveness of other rhizobial strains in the rhizosphere and the environmental adaptability of the favorable rhizobial strain (in this case, to mild vermiculite or hostile sandy soil). To produce high nodulation and efficient nitrogen fixation, the most favorable rhizobial strain should be selected and inoculated into the rhizosphere of legume plants under optimum environmental conditions.  相似文献   

14.
Long-distance control of nodulation: Molecules and models   总被引:1,自引:0,他引:1  
Legume plants develop root nodules to recruit nitrogen-fixing bacteria called rhizobia. This symbiotic relationship allows the host plants to grow even under nitrogen limiting environment. Since nodule development is an energetically expensive process, the number of nodules should be tightly controlled by the host plants. For this purpose, legume plants utilize a long-distance signaling known as autoregulation of nodulation (AON). AON signaling in legumes has been extensively studied over decades but the underlying molecular mechanism had been largely unclear until recently. With the advent of the model legumes, L. japonicus and M. truncatula, we have been seeing a great progress including isolation of the AON-associated receptor kinase. Here, we summarize recent studies on AON and discuss an updated view of the long-distance control of nodulation.  相似文献   

15.
The legume nodule, which houses nitrogen-fixing rhizobia, is a unique plant organ. Its homology with lateral roots has been inferred by a comparison with other nitrogen-fixing nodules, especially those formed on actinorhizal plants in response to Frankia inoculation or on Parasponia roots following inoculation with Bradyrhizobium species. These nodules are clearly modified lateral roots in terms of their structure and development. However, legume nodules differ from lateral roots and these other nodules in their developmental origin, anatomy, and patterns of gene expression, and, consequently, several other evolutionary derivations, including from stems, wound or defense responses, or the more ancient vesicular-arbuscular mycorrhizal symbiosis, have been postulated for the legume nodule. In this review, we first present a broad view of the legume family showing the diversity of nodulation occurrence and types in the different subfamilies and particularly within the subfamily Papilionoideae. We then define the typological and molecular criteria used to discriminate the basic organs — root, stem, leaf— of the plant. Finally, we discuss the possible origins of the legume nodule in terms of these typological and molecular bases.  相似文献   

16.
Bradyrhizobium elkanii produces rhizobitoxine, an enol-ether amino acid, which has been regarded as a phytotoxin because it causes chlorosis in soybeans. However, recent studies have revealed that rhizobitoxine plays a positive role in establishing symbiosis between B. elkanii and host legumes: rhizobitoxine enhances the nodulation process by inhibiting ACC (1-aminocyclopropane-1-carboxylate) synthase in the ethylene biosynthesis of host roots. B. elkanii rtxA and rtxC genes are required for rhizobitoxine production. In particular, rtxC gene is involved in the desaturation of dihydrorhizobitoxine into rhizobitoxine. A legume with a mutated ethylene receptor gene produced markedly higher numbers of rhizobial infection threads and nodule primordia. Thus, endogenous ethylene in legume roots negatively regulates the formation of nodule primordia, which is overcome by rhiozbitoxine. Although a plant pathogen Burkholderia andropogonis has been known to produce rhizobitoxine, the genome sequence of Xanthomonas oryzae showed the existence of a putative rhizobitoxine transposon in the genome. The cumulative evidence suggests that rhizobitoxine-producing bacteria modulate plant-microbe interactions via ethylene in the rhizosphere and phyllosphere environments. In addition, rhizobitoxine-producing capability might be utilized as tools in agriculture and biotechnology.  相似文献   

17.
It has been known for more than a century that rhizobia can promote the growth of legumes through the formation of nitrogen-fixing nodules, but the interaction of rhizobia with non-legumes has been neglected as an experimental system. During the last couple of decades, work on rhizobial interaction with non-legumes has been done progressively and it has been demonstrated that rhizobia can associate with roots of non-legumes also, without forming true nodules, and can promote their growth by using one or more of the direct or indirect mechanisms of actions. Phytohormone production, secretion of other chemicals like lipo-chito-oligosaccharides (LCOs) and lumichrome, solubilization of precipitated phosphorus and mineralization of organic P, improvement in uptake of plant nutrients by altering root morphology, production of siderophores to meet the iron requirements of the plant under iron-stressed conditions and lowering of ethylene level through ACC deaminase enzyme, are some examples of the rhizobial mechanisms with direct positive effects on non-leguminous plant growth. Indirectly, rhizobia improve the growth of non-legumes through biocontrol of pathogens via antibiosis, parasitism or competition with pathogens for nutrients and space, by inducing systemic resistance in the host plant and through increasing root adhering soil by releasing exopolysaccarides which regulate the water movement and facilitate the root growth. However, no influence or even inhibitory effects of rhizobial inoculation on non-legumes has also been demonstrated in some cases. Plant growth promoting mechanisms of rhizobia and its practical application in non-legumes are the major focus of this review.  相似文献   

18.
The interaction between legumes and rhizobia has been well studied in the context of a mutualistic, nitrogen‐fixing symbiosis. The fitness of legumes, including important agricultural crops, is enhanced by the plants’ ability to develop symbiotic associations with certain soil bacteria that fix atmospheric nitrogen into a utilizable form, namely, ammonia, via a chemical reaction that only bacteria and archaea can perform. Of the bacteria, members of the alpha subclass of the protebacteria are the best‐known nitrogen‐fixing symbionts of legumes. Recently, members of the beta subclass of the proteobacteria that induce nitrogen‐fixing nodules on legume roots in a species‐specific manner have been identified. In this issue, Bontemps et al. reveal that not only are these newly identified rhizobia novel in shifting the paradigm of our understanding of legume symbiosis, but also, based on symbiotic gene phylogenies, have a history that is both ancient and stable. Expanding our understanding of novel plant growth promoting rhizobia will be a valuable resource for incorporating alternative strategies of nitrogen fixation for enhancing plant growth.  相似文献   

19.
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume–rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume–rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume–rhizobia symbiosis. The means by which these processes enhance the legume–rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume–rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.  相似文献   

20.
The ethylene releasing compound, 2-chloroethylphosphonic acid (ethephon) inhibited nodule development in common bean (Phaseolus vulgaris L.) plants. In contrast, inhibitors of ethylene synthesis or its physiological activity enhanced nodulation. In a co-culture of bean seeds and rhizobia, ethephon inhibited rhizobial growth while inhibitors of ethylene synthesis or action did not influence the growth and proliferation of rhizobia. These data emphasize the role of ethylene as a regulator of nodulation in determinate nodulators and indicate that the ethylene signaling pathway involved in the nodulation process is not limited to the plant host but also involves the bacterial symbiont.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号