首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
A biofeedback model of hyperventilation during exercise was used to assess the independent effects of pH, arterial CO2 partial pressure (PaCO2), and minute ventilation on blood lactate during exercise. Eight normal subjects were studied with progressive upright bicycle exercise (2-min intervals, 25-W increments) under three experimental conditions in random order. Arterialized venous blood was drawn at each work load for measurement of blood lactate, pH, and PaCO2. Results were compared with those from reproducible control tests. Experimental conditions were 1) biofeedback hyperventilation (to increase pH by 0.08-0.10 at each work load); 2) hyperventilation following acetazolamide (which returned pH to control values despite ventilation and PaCO2 identical to condition 1); and 3) metabolic acidosis induced by acetazolamide (with spontaneous ventilation). The results showed an increase in blood lactate during hyperventilation. Blood lactate was similar to control with hyperventilation after acetazolamide, suggesting that the change was due to pH and not to PaCO2 or total ventilation. Exercise during metabolic acidosis (acetazolamide alone) was associated with blood lactate lower than control values. Respiratory alkalosis during exercise increases blood lactate. This is due to the increase in pH and not to the increase in ventilation or the decrease in PaCO2.  相似文献   

6.
7.
CSF bicarbonate regulation was studied in respiratory acidosis and alkalosis of 4h duration in antsthetized dogs. PCO2, pH, HCO3, ammonia, and lactate in CSF and arterial and safittal sinus bloof were measured when equal volumes of saline or acetazolamide (8 mg) were injected into lateral cerebral ventricles. The brain CO2 dissociation curve was determined at the end of all experiments. CSF and arterial bicarbonate increased 11.8 and 5.9 meg/l, respectively, in acidosis. Acetazolamide limited the rise in CSF bicarbonate to 4.2 meg/l, and prevented the CSF bicarbonate increase associated with hyperammonemia. During alkalosis CSF bicarbonate fell 6.5 meg/l and CSF lactate increased almost 2 meg/l while arterial bicarbonate fell 5.7 meg/l and lactate remained unchanged. Thus plasma bicarbonate changes account for some of the CSF unchanged. Thus plasma bicarbonate changes account for some of the CSF bicarbonate alterations in respiratory acid-base-disturbances. In acidosis additional CSF bicarbonate is formed by the choroid plexus and glial cells on the inner and outer surfaces of the brain--a reaction catalyzed by the locally present carbonic anhydrase. In alkalosis the greater fall in CSF bicarbonate than blood is due to selective brain and CSF lactic acidosis.  相似文献   

8.
Effect of respiratory alkalosis on skeletal muscle metabolism in the dog   总被引:2,自引:0,他引:2  
These experiments were conducted to determine whether changes in skeletal muscle metabolism contribute to the previously reported increase in whole-body O2 uptake (VO2) during respiratory alkalosis. The hind-limb and gastrocnemius-plantaris preparations in anesthetized and paralyzed dogs were used. VO2 of the hindlimb and gastrocnemius muscle was calculated from measurements of venous blood flow and arterial and venous O2 concentrations (Van Slyke analysis). Whole-body VO2 was measured by the open-circuit method. Minute ventilation (hence blood gases and pH) was controlled by a mechanical respirator. Whole-body, hind-limb, and gastrocnemius muscle VO2 increased 14, 19, and 20%, respectively, during alkalosis (P less than 0.05). In all experiments, arterial lactate concentration increased significantly (P less than 0.05) during alkalosis. A positive venoarterial lactate difference across muscle during alkalosis indicated that skeletal muscle is a source of the elevated blood lactate. We concluded that VO2 of resting skeletal muscle is increased during states of respiratory alkalosis and that this increase can account for much of the increase in whole-body VO2.  相似文献   

9.
10.
Eleven instances of a mixed acid-base disorder consisting of chronic respiratory acidosis and metabolic alkalosis were recognized in eight patients with chronic obstructive lung disease and carbon dioxide retention. Correction of the metabolic alkalosis led to substantial improvement in blood gas values and clinical symptoms. Patients with mixed chronic respiratory acidosis and metabolic alkalosis constitute a common subgroup of patients with chronic obstructive lung disease and carbon dioxide retention; these patients benefit from correction of the metabolic alkalosis.  相似文献   

11.
12.
Imipramine and related derivatives were tested as possible chemotherapeutic agents against Trypanosoma cruzi parasites in vitro. The IC50 values and the lethal concentrations for two cloned stocks of the parasite were determined. 2-Nitrodesmethylimipramine was the most effective compound tested (IC50 = 4-7 microM). Parasites that were able to grow and to complete the intracellular cycle in mammalian cells in the presence of the drug could be selected. Differences in susceptibility to some imipramine analogs between T. cruzi-cloned stocks were found. The study also shows that modification of the imipramine molecule by electron-withdrawing groups greatly enhances its biological activity.  相似文献   

13.
14.
15.
16.
17.
Acute hypoxia causes hyperventilation and respiratory alkalosis, often combined with increased diuresis and sodium, potassium, and bicarbonate excretion. With a low sodium intake, the excretion of the anion bicarbonate may be limited by the lower excretion rate of the cation sodium through activated sodium-retaining mechanisms. This study investigates whether the short-term renal compensation of hypoxia-induced respiratory alkalosis is impaired by a low sodium intake. Nine conscious, tracheotomized dogs were studied twice either on a low-sodium (LS = 0.5 mmol sodium x kg body wt-1 x day-1) or high-sodium (HS = 7.5 mmol sodium x kg body wt-1 x day-1) diet. The dogs breathed spontaneously via a ventilator circuit during the experiments: first hour, normoxia (inspiratory oxygen fraction = 0.21); second to fourth hour, hypoxia (inspiratory oxygen fraction = 0.1). During hypoxia (arterial PO2 34.4 +/- 2.1 Torr), plasma pH increased from 7.37 +/- 0.01 to 7.48 +/- 0.01 (P < 0.05) because of hyperventilation (arterial PCO2 25.6 +/- 2.4 Torr). Urinary pH and urinary bicarbonate excretion increased irrespective of the sodium intake. Sodium excretion increased more during HS than during LS, whereas the increase in potassium excretion was comparable in both groups. Thus the quick onset of bicarbonate excretion within the first hour of hypoxia-induced respiratory alkalosis was not impaired by a low sodium intake. The increased sodium excretion during hypoxia seems to be combined with a decrease in plasma aldosterone and angiotensin II in LS as well as in HS dogs. Other factors, e.g., increased mean arterial blood pressure, minute ventilation, and renal blood flow, may have contributed.  相似文献   

18.
19.
20.
Depression is one of the most common mental disorders and a primary cause of disability. To better treat patients suffering this illness, elucidation of the underlying psychopathological and neurobiological mechanisms is urgently needed. Based on the above-mentioned evidence, we sought to investigate the effects of neuropeptide Y (NPY) treatment in tricyclic antidepressant treatment-resistant depression induced by adrenocorticotropic hormone (ACTH) administration. Mice were treated with NPY (5.84, 11.7 or 23.4 mmol/μl) intracerebroventricularly (i.c.v.) for one or five days. The levels of serum corticosterone, tryptophan (TRP), kynurenine (KYN), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and indoleamine 2,3-dioxygenase (IDO) activity in the hippocampus were analyzed. The behavioral parameters (depressive-like and locomotor activity) were also verified. This study demonstrated that ACTH administration increased serum corticosterone levels, KYN, 5-HIAA levels, IDO activity (hippocampus), immobility in the forced swimming test (FST) and the latency to feed in the novelty suppressed feeding test (NSFT). In addition, ACTH administration decreased the BDNF and NGF levels in the hippocampus of mice. NPY treatment was effective in preventing these hormonal, neurochemical and behavioral alterations. It is suggested that the main target of NPY is the modulation of corticosterone and neuronal plasticity protein levels, which may be closely linked with pharmacological action in a model of tricyclic antidepressant treatment-resistant depression. Thus, this study demonstrated a protective effect of NPY on the alterations induced by ACTH administration in mice, indicating that it could be useful as a therapy for the treatment of tricyclic antidepressant treatment-resistant depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号