首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hypothermia has been proposed as a treatment for reducing neuronal damage in the brain induced by hypoxic ischemia. In the developing brain, hypoxic ischemia-induced injury may give rise to cerebral palsy (CP). However, it is unknown whether hypothermia might affect the development of CP. The purpose of this study was to investigate whether hypothermia would have a protective effect on the brains of immature, 3-day old (P3) mice after a challenge of cerebral ischemia. Cerebral ischemia was induced in P3 mice with a right common carotid artery ligation followed by hypoxia (6% O2, 37°C) for 30 min. Immediately after hypoxic ischemia, mice were exposed to hypothermia (32°C) or normothermia (37°C) for 24 h. At 4 weeks of age, mouse motor development was tested in a behavioral test. Mice were sacrificed at P4, P7, and 5 weeks to examine brain morphology. The laminar structure of the cortex was examined with immunohistochemistry (Cux1/Ctip2); the number of neurons was counted; and the expression of myelin basic protein (MBP) was determined. The hypothermia treatment was associated with improved neurological outcomes in the behavioral test. In the normothermia group, histological analyses indicated reduced numbers of neurons, reduced cortical laminar thickness in the deep, ischemic cortical layers, and significant reduction in MBP expression in the ischemic cortex compared to the contralateral cortex. In the hypothermia group, no reductions were noted in deep cortical layer thickness and in MBP expression in the ischemic cortex compared to the contralateral cortex. At 24 h after the hypothermia treatment prevented the neuronal cell death that had predominantly occurred in the ischemic cortical deep layers with normothermia treatment. Our findings may provide a preclinical basis for testing hypothermal therapies in patients with CP induced by hypoxic ischemia in the preterm period.  相似文献   

3.
Adult bed bugs were exposed to the sublethal temperatures 34.0°C, 35.5°C, 37.0°C, 38.5°C, or 40.0°C for 3, 6, or 9 days. The two uppermost temperatures induced 100% mortality within 9 and 2 days, respectively, whereas 34.0°C had no observable effect. The intermediate temperatures interacted with time to induce a limited level of mortality but had distinct effects on fecundity, reflected by decreases in the number of eggs produced and hatching success. Adult fecundity remained low for up to 40 days after heat exposure, and the time until fertility was restored correlated with the temperature-sum experienced during heat exposure. Three or 6 days of parental exposure to 38.5°C significantly lowered their offspring’s feeding and moulting ability, which consequently led to a failure to continue beyond the third instar. Eggs that were deposited at 22.0°C before being exposed to 37.0°C for 3 or 6 days died, whereas eggs that were exposed to lower temperatures were not significantly affected. Eggs that were deposited during heat treatment exhibited high levels of mortality also at 34.0°C and 35.5°C. The observed negative effects of temperatures between 34.0°C and 40.0°C may be utilized in pest management, and sublethal temperature exposure ought to be further investigated as an additional tool to decimate or potentially eradicate bed bug populations. The effect of parental heat exposure on progeny demonstrates the importance of including maternal considerations when studying bed bug environmental stress reactions.  相似文献   

4.
This study was designed to reveal the therapeutic regimen and mechanism of action underlying hypothermia treatment in combination with stem cell transplantation for ameliorating neonatal hypoxic-ischemic-like injury. Primary rat neurons were exposed to oxygen-glucose deprivation (OGD), which produced hypoxic-ischemic-like injury in vitro, then incubated at 25°C (severe hypothermia), 34°C (moderate hypothermia), and 37°C (normothermia) with or without subsequent co-culture with mesenchymal stromal cells (MSCs). Combination treatment of moderate hypothermia and MSCs significantly improved cell survival and mitochondrial activity after OGD exposure. The exposure of delta opioid human embryonic kidney cells (HEK293) to moderate hypothermia attenuated OGD-mediated cell alterations, which were much more pronounced in HEK293 cells overexpressing the delta opioid receptor. Further, the addition of delta opioid peptide to 34°C hypothermia and stem cell treatment in primary rat neurons showed synergistic neuroprotective effects against OGD which were significantly more robust than the dual combination of moderate hypothermia and MSCs, and were significantly reduced, but not completely abolished, by the opioid receptor antagonist naltrexone altogether implicating a ligand-receptor mechanism of neuroprotection. Further investigations into non-opioid therapeutic signaling pathways revealed growth factor mediation and anti-apoptotic function accompanying the observed therapeutic benefits. These results support combination therapy of hypothermia and stem cells for hypoxic-ischemic-like injury in vitro, which may have a direct impact on current clinical trials using stand-alone hypothermia or stem cells for treating neonatal encephalopathy.  相似文献   

5.
Animal cells and cell lines, such as HEK-293 cells, are commonly cultured at 37°C. These cells are often used to express recombinant proteins. Having a higher expression level or a higher protein yield is generally desirable. As we demonstrate in this study, dropping culture temperature to 33°C, but not lower, 24 hours after transient transfection in HEK-293S cells will give rise to ~1.5-fold higher expression of green fluorescent protein (GFP) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. By following the time course of the GFP-expressing cells growing at 37°C and 33°C from 24 hours after transfection (including 19 hours recovery at 37°C in the normal growth medium), we found that a mild hypothermia (i.e., 33°C) reduces the growth rate of HEK-293S cells, while increasing cellular productivity of recombinant proteins. As a result, green cells remain undivided in a longer period of time. Not surprisingly, the property of a recombinant protein expressed in the cells grown at 33°C is unaffected, as shown by the use of AMPA receptors. We further demonstrate with the use of PC12 cells that this method may be especially useful when a recombinant protein is difficult to express using a chemical-based, transient transfection method.  相似文献   

6.
Microenvironment has been increasingly recognized as a critical regulator of cancer progression. In this study, we identified early changes in the microenvironment that contribute to malignant progression. Exposure of human bronchial epithelial cells (BEAS-2B) to methylnitrosourea (MNU) caused a reduction in cell toxicity and an increase in clonogenic capacity when the temperature was lowered from 37°C to 28°C. Hypothermia-incubated adipocyte media promoted proliferation in A549 cells. Although a hypothermic environment could increase urethane-induced tumor counts and Lewis lung cancer (LLC) metastasis in lungs of three breeds of mice, an increase in tumor size could be discerned only in obese mice housed in hypothermia. Similarly, coinjections using differentiated adipocytes and A549 cells promoted tumor development in athymic nude mice when adipocytes were cultured at 28°C. Conversely, fat removal suppressed tumor growth in obese C57BL/6 mice inoculated with LLC cells. Further studies show hypothermia promotes a MNU-induced epithelial-mesenchymal transition (EMT) and protects the tumor cell against immune control by TGF-β1 upregulation. We also found that activated adipocytes trigger tumor cell proliferation by increasing either TNF-α or VEGF levels. These results suggest that hypothermia activates adipocytes to stimulate tumor boost and play critical determinant roles in malignant progression.  相似文献   

7.
Boese SR  Huner NP 《Plant physiology》1992,99(3):1141-1145
Room temperature chlorophyll a fluorescence was used to determine the effects of developmental history, developmental stage, and leaf age on susceptibility of spinach to in vivo low temperature (5°C) induced photoinhibition. Spinach (Spinacia oleracea cv Savoy) leaves expanded at cold hardening temperatures (5°C day/night), an irradiance of 250 micromoles per square meter per second of photosynthetic proton flux density, and a photoperiod of 16 hours were less sensitive than leaves expanded at nonhardening temperatures (16 or 25°C day/night) and the same irradiance and photoperiod. This differential sensitivity to low-temperature photoinhibition was observed at high (1200) but not lower (500 or 800 micromoles per square meter per second) irradiance treatment. In spite of a differential sensitivity to photoinhibition, both cold-hardened and nonhardened spinach exhibited similar recovery kinetics at either 20 or 5°C. Shifting plants grown at 16°C (day/night) to 5°C (day/night) for 12 days after full leaf expansion did not alter the sensitivity to photoinhibition at 5°C. Conversely, shifting plants grown at 5°C (day/night) to 16°C (day/night) for 12 days produced a sensitivity to photoinhibition at 5°C similar to control plants grown at 16°C. Thus, any resistance to low-temperature photoinhibition acquired during growth at 5°C was lost in 12 days at 16°C. We conclude that leaf developmental history, developmental stage, and leaf age contribute significantly to the in vivo photoinhibitory response of spinach. Thus, these characteristics must be defined clearly in studies of plant susceptibility to photoinhibition.  相似文献   

8.
Temperature variations in cells, tissues and organs may occur in a number of circumstances. We report here that reducing temperature of cells in culture to 25°C for 5 days followed by a rewarming to 37°C affects cell biology and induces a cellular stress response. Cell proliferation was almost arrested during mild hypothermia and not restored upon returning to 37°C. The expression of cold shock genes, CIRBP and RBM3, was increased at 25°C and returned to basal level upon rewarming while that of heat shock protein HSP70 was inversely regulated. An activation of pro-apoptotic pathways was evidenced by FACS analysis and increased Bax/Bcl2 and BclXS/L ratios. Concomitant increased expression of the autophagosome-associated protein LC3II and AKT phosphorylation suggested a simultaneous activation of autophagy and pro-survival pathways. However, a large proportion of cells were dying 24 hours after rewarming. The occurrence of DNA damage was evidenced by the increased phosphorylation of p53 and H2AX, a hallmark of DNA breaks. The latter process, as well as apoptosis, was strongly reduced by the radical oxygen species (ROS) scavenger, N-acetylcysteine, indicating a causal relationship between ROS, DNA damage and cell death during mild cold shock and rewarming. These data bring new insights into the potential deleterious effects of mild hypothermia and rewarming used in various research and therapeutical fields.  相似文献   

9.
Translational thermotolerance in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1       下载免费PDF全文
While protein synthesis is rapidly inactivated in Saccharomyces cerevisiae, cells shifted from log growth at 30°C to 43°C, a 1-h 37°C treatment given to cells just prior to the shift to 43°C partially blocks this inactivation. By contrast, such a pre-heat shock treament has no protective effect on translational inactivation at 45°C or higher. Cells allowed to approach stationary phase not only develop an enhanced thermotolerance relative to log cells but also exhibit a pronounced resistance to inactivation of protein synthesis at 43°C as well as at 45°C. We have found that this ‘translational thermotolerance’ can also be induced in S. cerevisiae by briefly treating log phase cells at 30°C with cycloheximide. Using such a procedure to induce stabilization of protein synthesis at 43°C, we have been able to show that heat shock-induced proteins are not responsible for the establishment of this protective effect. This work shows that enhanced thermotolerance can be induced in log cells even after a shift to 43°C, as long as a prior translational thermotolerance has been established. Futhermore, we show that the capacity of plateau cells to maintain translation at 43°C contributes significantly to their state of enhanced thermotolerance.  相似文献   

10.
When soybean Glycine max var Wayne seedlings are shifted from a normal growth temperature of 28°C up to 40°C (heat shock or HS), there is a dramatic change in protein synthesis. A new set of proteins known as heat shock proteins (HSPs) is produced and normal protein synthesis is greatly reduced. A brief 10-minute exposure to 45°C followed by incubation at 28°C also results in the synthesis of HSPs. Prolonged incubation (e.g. 1-2 hours) at 45°C results in greatly impaired protein synthesis and seedling death. However, a pretreatment at 40°C or a brief (10-minute) pulse treatment at 45°C followed by a 28°C incubation provide protection (thermal tolerance) to a subsequent exposure at 45°C. Maximum thermoprotection is achieved by a 2-hour 40°C pretreatment or after 2 hours at 28°C with a prior 10-minute 45°C exposure. Arsenite treatment (50 micromolar for 3 hours) also induces the synthesis of HSP-like proteins, and also provides thermoprotection to a 45°C HS; thus, there is a strong positive correlation between the accumulation of HSPs and the acquisition of thermal tolerance under a range of conditions.

During 40°C HS, some HSPs become localized and stably associated with purified organelle fractions (e.g. nuclei, mitochondria, and ribosomes) while others do not. A chase at 28°C results in the gradual loss over a 4-hour period of the HSPs from the organelle fractions, but the HSPs remain selectively localized during a 40°C chase period. If the seedlings are subjected to a second HS after a 28°C chase, the HSPs rapidly (complete within 15 minute) relocalize in the organelle fractions. The relative amount of the HSPs which relocalize during a second HS increases with higher temperatures from 40°C to 45°C. Proteins induced by arsenite treatment are not selectively localized with organelle fractions at 28°C but become organelle-associated during a subsequent HS at 40°C.

  相似文献   

11.
Regulation of the heat shock response in soybean seedlings   总被引:10,自引:3,他引:7       下载免费PDF全文
  相似文献   

12.
Thermal, metabolic, and circulatory responses were studied in six hill-walkers taking part in a 28-mile (45-km.) walk in rough country in autumn and winter, air temperatures being 6 to 12° C. and –2 to 2° C., respectively.Though they were an apparently well-matched party, the walkers had to split into three pairs to avoid exhaustion. They adjusted their clothing so that mean skin temperatures were similar in both warm and cold conditions, the average value being 30·5° C. compared with the resting comfort range of 33 to 34·5° C. When, on the winter trial, skin temperatures were lowered by reduction of clothing, mean skin temperatures fell to 26·5 to 27·8° C., one subject showing a value of 21·3° C. These temperatures were associated with moderate discomfort from cold.Gut temperatures during exercise, measured with a radio pill, averaged 38·7 to 37·9° C. on the autumn exercise. Slightly lower values were observed in winter, but this was associated with slower walking rather than cold stress. A fat and a thin subject walking together with minimal clothing showed widely different temperature responses, the fatter subject having a lower skin temperature and higher gut temperature than his companion. These results were compared with other results on extreme cold stress and discussed in relation to hypothermia. Heart rate and blood pressure findings were unremarkable, except for increased post-exercise heart rates and standing/lying heart rate differences, and a tendency to postural hypotension associated with exhaustion. Blood volume was not reduced in exhaustion and there were no significant changes in blood electrolytes or other constituents apart from a small rise in potassium. Ketonuria developed in all subjects.  相似文献   

13.

Introduction

Hypothermia is a risk factor for increased mortality in children with severe acute malnutrition (SAM). Yet frequent temperature measurement remains unfeasible in under-resourced units in developing countries. ThermoSpot is a continuous temperature monitoring sticker designed originally for neonates. When applied to skin, its liquid crystals are designed to turn black with hypothermia and remain green with normothermia.

Aims

To (i) estimate the diagnostic accuracy of ThermoSpots for detecting WHO-defined hypothermia (core temperature <35.5°C or peripheral temperature <35.0°C) in children with SAM and (ii) determine their acceptability amongst mothers.

Methods

Children with SAM in a malnutrition unit in Malawi were enrolled during March-July 2010. The sensitivity and specificity of ThermoSpots were calculated by comparing the device colour against ‘gold standard’ rectal temperatures taken on admission and follow up peripheral temperatures taken until discharge. Guardians completed a questionnaire to assess acceptability.

Results

Hypothermia was uncommon amongst the 162 children enrolled. ThermoSpot successfully detected the one rectal temperature and two peripheral temperatures recorded that met the WHO definition of hypothermia. Overall, 3/846 (0.35%) temperature measurements were in the WHO-defined hypothermia range. Interpreting the brown transition colour (between black and green) as hypothermia improved sensitivities. For milder hypothermia definitions, sensitivities declined (<35.4°C, 50.0%; <35.9°C, 39.2%). Specificity was consistently above 94%. From questionnaires, 40/43 (93%) mothers reported they were 90–100% happy with the device overall. Free-text answers revealed themes of “Skin Rashes”, “User-satisfaction” and “Empowerment".

Conclusion

Although hypothermia was uncommon in this study, ThermoSpots successfully detected these episodes in malnourished children and were acceptable to mothers. Research in settings where hypothermia is common is needed to determine performance with certainty. Instructing users to act when the device’s transition colour appears could improve accuracy. If reliable, ThermoSpots may offer simple, acceptable and continuous temperature measurement for high-burden areas and reduce the workload of over-stretched staff.  相似文献   

14.
Myosin filament–based regulation supplements actin filament–based regulation to control the strength and speed of contraction in heart muscle. In diastole, myosin motors form a folded helical array that inhibits actin interaction; during contraction, they are released from that array. A similar structural transition has been observed in mammalian skeletal muscle, in which cooling below physiological temperature has been shown to reproduce some of the structural features of the activation of myosin filaments during active contraction. Here, we used small-angle x-ray diffraction to characterize the structural changes in the myosin filaments associated with cooling of resting and relaxed trabeculae from the right ventricle of rat hearts from 39°C to 7°C. In intact quiescent trabeculae, cooling disrupted the folded helical conformation of the myosin motors and induced extension of the filament backbone, as observed in the transition from diastole to peak systolic force at 27°C. Demembranation of trabeculae in relaxing conditions induced expansion of the filament lattice, but the structure of the myosin filaments was mostly preserved at 39°C. Cooling of relaxed demembranated trabeculae induced changes in motor conformation and filament structure similar to those observed in intact quiescent trabeculae. Osmotic compression of the filament lattice to restore its spacing to that of intact trabeculae at 39°C stabilized the helical folded state against disruption by cooling. The myosin filament structure and motor conformation of intact trabeculae at 39°C were largely preserved in demembranated trabeculae at 27°C or above in the presence of Dextran, allowing the physiological mechanisms of myosin filament–based regulation to be studied in those conditions.  相似文献   

15.
Indole-3-acetic acid (IAA) in highly purified extracts of rose achenes (Rosa rugosa var rubra) was quantified by means of ion-pair reversephase high performance liquid chromatography with spectrofluorimetric detection. Changes in IAA content were determined during a 14-week 4°C stratification, which leads to dormancy breakage, and during subsequent germination at 17°C. IAA was also determined in achenes stratified in parallel at 17°C, which does not induce release from dormancy. IAA decreased during the first 2 weeks of stratification both at 4°C and at 17°C. IAA remained low during the remaining 12 weeks of stratification at 4°C, whereas it continued to decrease in achenes kept at 17°C. An immediate increase in IAA during germination was followed by transients in the IAA level. The results suggest that IAA is without a regulating role in dormancy release although it seems to be involved in the germination process.  相似文献   

16.

Background

Mild therapeutic hypothermia following cardiac arrest is neuroprotective, but its effect on myocardial dysfunction that is a critical issue following resuscitation is not clear. This study sought to examine whether hypothermia and the combination of hypothermia and pharmacological postconditioning are cardioprotective in a model of cardiopulmonary resuscitation following acute myocardial ischemia.

Methodology/Principal Findings

Thirty pigs (28–34 kg) were subjected to cardiac arrest following left anterior descending coronary artery ischemia. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. After successful return of spontaneous circulation (n = 21), coronary perfusion was reestablished after 60 minutes of occlusion, and animals were randomized to either normothermia at 38°C, hypothermia at 33°C or hypothermia at 33°C combined with sevoflurane (each group n = 7) for 24 hours. The effects on cardiac damage especially on inflammation, apoptosis, and remodeling were studied using cellular and molecular approaches. Five animals were sham operated. Animals treated with hypothermia had lower troponin T levels (p<0.01), reduced infarct size (34±7 versus 57±12%; p<0.05) and improved left ventricular function compared to normothermia (p<0.05). Hypothermia was associated with a reduction in: (i) immune cell infiltration, (ii) apoptosis, (iii) IL-1β and IL-6 mRNA up-regulation, and (iv) IL-1β protein expression (p<0.05). Moreover, decreased matrix metalloproteinase-9 activity was detected in the ischemic myocardium after treatment with mild hypothermia. Sevoflurane conferred additional protective effects although statistic significance was not reached.

Conclusions/Significance

Hypothermia reduced myocardial damage and dysfunction after cardiopulmonary resuscitation possible via a reduced rate of apoptosis and pro-inflammatory cytokine expression.  相似文献   

17.
Endogenous abscisic acid levels and induced heat shock proteins were measured in tissue exposed for 6 hours to temperatures that reduced their subsequent chilling sensitivity. One-centimeter discs excised from fully expanded cotyledons of 11-day-old seedlings of cucumber (Cucumis sativus L., cv Poinsett 76) were exposed to 12.5 or 37°C for 6 hours followed by 4 days at 2.5 or 12.5°C. Ion leakage, a qualitative indicator of chilling injury, increased after 2 to 3 day exposure to 2.5°C, but not to 12.5°C, a nonchilling temperature. Exposure to 37°C before chilling significantly reduced the rate of ion leakage by about 60% compared to tissue exposed to 12.5°C before chilling, but slightly increased leakage compared to tissue exposed to 12.5 or 37°C and held at the nonchilling temperature of 12.5°C. There was no relationship between abscisic acid content following exposure to 12.5 or 37°C and chilling tolerance. Five heat shock proteins, with apparent molecular mass of 25, 38, 50, 70, and 80 kilodaltons, were induced by exposure to 37 or 42°C for 6 hours, and their appearance coincided with increased chilling resistance. Heat shock treatments reduced the synthesis of three proteins with apparent molecular mass of 14, 17, and 43 kilodaltons. Induction of heat shock proteins could be a possible cause of reduced chilling injury in tissue exposed to 37 or 42°C.  相似文献   

18.

Background

The anesthetic management of patients undergoing endovascular treatment of cerebral aneurysms in the interventional neuroradiology suite can be challenged by hypothermia because of low ambient temperature for operating and maintaining its equipments. We evaluated the efficacy of skin surface warming prior to induction of anesthesia to prevent the decrease in core temperature and reduce the incidence of hypothermia.

Methods

Seventy-two patients were randomized to pre-warmed and control group. The patients in pre-warmed group were warmed 30 minutes before induction with a forced-air warming blanket set at 38°C. Pre-induction tympanic temperature (Tpre) was measured using an infrared tympanic thermometer and core temperature was measured at the esophagus immediately after intubation (T0) and recorded at 20 minutes intervals (T20, T40, T60, T80, T100, and T120). The number of patients who became hypothermic at each time was recorded.

Results

Tpre in the control and pre-warmed group were 36.4 ± 0.4°C and 36.6 ± 0.3°C, whereas T0 were 36.5 ± 0.4°C and 36.6 ± 0.2°C. Core temperatures in the pre-warmed group were significantly higher than the control group at T20, T40, T60, T80, T100, and T120 (P < 0.001). Compared to T0, core temperatures at each time were significantly lower in both two groups (P = 0.007 at T20 in pre-warmed group, P < 0.001 at the other times in both groups). The incidence of hypothermia was significantly lower in the pre-warmed group than the control group from T20 to T120 (P = 0.002 at T20, P < 0.001 at the other times).

Conclusion

Pre-warming for 30 minutes at 38°C did not modify the trends of the temperature decrease seen in the INR suite. It just slightly elevated the beginning post intubation base temperature. The rate of decrease was similar from T20 to T120. However, pre-warming considerably reduced the risk of intraprocedural hypothermia.

Trial registration

Clinical Research Information Service (CRiS) Identifier: KCT0001320. Registered December 19th, 2014.  相似文献   

19.
Internal ribosome entry site (IRES)-mediated translation is an essential replication step for certain viruses. As IRES-mediated translation is regulated differently from cap-dependent translation under various cellular conditions, we sought to investigate whether temperature influences efficiency of viral IRES-mediated translation initiation by using bicistronic reporter constructs containing an IRES element of encephalomyocarditis virus (EMCV), foot-and-mouth disease virus (FMDV), hepatitis C virus (HCV), human rhinovirus (HRV) or poliovirus (PV). Under mild hypothermic conditions (30 and 35°C), we observed increases in the efficiency of translation initiation by HCV and HRV IRES elements compared to translation initiation at 37°C. The promotion of HRV IRES activity was observed as early as 2 hours after exposure to mild hypothermia. We also confirmed the promotion of translation initiation by HRV IRES under mild hypothermia in multiple cell lines. The expression levels and locations of polypyrimidine tract-binding protein (PTB) and upstream of N-Ras (unr), the IRES trans-acting factors (ITAFs) of HCV and HRV IRES elements, were not modulated by the temperature shift from 37°C to 30°C. Taken together, this study demonstrates that efficiency of translation initiation by some viral IRES elements is temperature dependent.  相似文献   

20.
Wu MT  Wallner SJ 《Plant physiology》1984,75(3):778-780
Using cultured pear (Pyrus communis cv Bartlett) cells, heat tolerance induced by heat shock was compared to that developed during growth at high temperature. After growth at 22°C, cells exposed to 38°C for 20 minutes (heat shock) showed maximum increased tolerance within 6 hours. Cells grown at 30°C developed maximum heat tolerance after 5 to 6 days; this maximum was well below that induced by heat shock. Heat shock-induced tolerance was fully retained at 22°C for 2 days and was only partly lost after 4 days. However, pear cells acclimated at 30°C lost all acquired heat tolerance 1 to 2 days after transfer to 22°C. In addition, cells which had been heat-acclimated by growth at 30°C showed an additional increase in heat tolerance in response to 39°C heat shock. The most striking difference between heat shock and high growth temperature effects on heat tolerance was revealed when tolerance was determined using viability tests based on different cell functions. Growth at 30°C produced a general hardening, i.e. increased heat tolerance was observed with all three viability tests. In contrast, significantly increased tolerance of heat-shocked cells was observed only with the culture regrowth test. The two types of treatment evoke different mechanisms of heat acclimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号