首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular mechanisms of potassium and sodium uptake in plants   总被引:20,自引:0,他引:20  
Potassium (K+) is an essential nutrient and the most abundant cation in plants, whereas the closely related ion sodium (Na+) is toxic to most plants at high millimolar concentrations. K+ deficiency and Na+ toxicity are both major constraints to crop production worldwide. K+ counteracts Na+ stress, while Na+, in turn, can to a certain degree alleviate K+ deficiency. Elucidation of the molecular mechanisms of K+ and Na+ transport is pivotal to the understanding – and eventually engineering – of plant K+ nutrition and Na+ sensitivity. Here we provide an overview on plant K+ transporters with particular emphasis on root K+ and Na+ uptake. Plant K+-permeable cation transporters comprise seven families: Shaker-type K+ channels, `two-pore' K+ channels, cyclic-nucleotide-gated channels, putative K+/H+ antiporters, KUP/HAK/KT transporters, HKT transporters, and LCT1. Candidate genes for Na+ transport are the KUP/HAK/KTs, HKTs, CNGCs, and LCT1. Expression in heterologous systems, localization in plants, and genetic disruption in plants will provide insight into the roles of transporter genes in K+ nutrition and Na+ toxicity.  相似文献   

2.
NHX‐type antiporters in the tonoplast have been reported to increase the salt tolerance of various plants species, and are thought to mediate the compartmentation of Na+ in vacuoles. However, all isoforms characterized so far catalyze both Na+/H+ and K+/H+ exchange. Here, we show that AtNHX1 has a critical involvement in the subcellular partitioning of K+, which in turn affects plant K+ nutrition and Na+ tolerance. Transgenic tomato plants overexpressing AtNHX1 had larger K+ vacuolar pools in all growth conditions tested, but no consistent enhancement of Na+ accumulation was observed under salt stress. Plants overexpressing AtNHX1 have a greater capacity to retain intracellular K+ and to withstand salt‐shock. Under K+‐limiting conditions, greater K+ compartmentation in the vacuole occurred at the expense of the cytosolic K+ pool, which was lower in transgenic plants. This caused the early activation of the high‐affinity K+ uptake system, enhanced K+ uptake by roots, and increased the K+ content in plant tissues and the xylem sap of transformed plants. Our results strongly suggest that NHX proteins are likely candidates for the H+‐linked K+ transport that is thought to facilitate active K+ uptake at the tonoplast, and the partitioning of K+ between vacuole and cytosol.  相似文献   

3.
王晓冬  王成  马智宏  侯瑞锋  高权  陈泉 《生态学报》2011,31(10):2822-2830
为研究盐胁迫下小麦幼苗生长及Na+、K+的吸收和积累规律,以中国春、洲元9369和长武134等3种耐盐性不同小麦品种为材料,采用非损伤微测技术检测盐胁迫2 d后的根系K+离子流变化,并对植株体内的Na+、K+含量进行测定。结果表明:短期(2d)盐胁迫对小麦生长有抑制作用,且对根系的抑制大于地上部,耐盐品种下降幅度小于盐敏感品种。盐胁迫下,小麦根际的 K+大量外流,盐敏感品种中国春K+流速显著高于耐盐品种长武134,最高可达15倍。小麦幼苗地上部分和根系均表现为Na+积累增加,K+积累减少,Na+/K+比随盐浓度增加而上升。中国春限Na+能力显著低于长武134,Na+/K+则显著高于长武134。综上所述,盐胁迫下造成小麦组织器官中Na+/K+比上升的主要原因是根系K+大量外流和Na+的过量积累,耐盐性不同的小麦品种间差异显著,并认为根系对K+的保有能力可能是作物耐盐性评价的一个重要指标。  相似文献   

4.
Transport,signaling, and homeostasis of potassium and sodium in plants   总被引:7,自引:1,他引:7  
Potassium (K+) is an essential macronutrient in plants and a lack of K+ significantly reduces the potential for plant growth and development. By contrast, sodium (Na+), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of K+ can be undertaken by Na+ but K+ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of K+ and Na+ transport and signaling in plants. This review summarizes three major topics: (i) the transport mechanisms of K+ and Na+ from the soil to the shoot and to the cellular - compartments; (ii) the mechanisms through which plants sense and respond to K+ and Na+ availability; and (iii) the components involved in maintenance of K+/Na+ homeostasis in plants under salt stress.  相似文献   

5.
Administration of low amounts of ethanol for a prolonged period increases rat brain synaptosomal (Na+–K+)-ATPase activity, the increase being less in the protein deficient rats. The adaptive mechanism to offset the stress imposed by the continued presence of ethanol seems to be depressed by low plane of nutrition. In vivo and in vitro effects of ethanol on (Na+–K+)ATPase seems to be different.  相似文献   

6.
7.
In the earth's crust and in seawater, K+ and Na+ are by far the most available monovalent inorganic cations. Physico-chemically, K+ and Na+ are very similar, but K+ is widely used by plants whereas Na+ can easily reach toxic levels. Indeed, salinity is one of the major and growing threats to agricultural production. In this article, we outline the fundamental bases for the differences between Na+ and K+. We present the foundation of transporter selectivity and summarize findings on transporters of the HKT type, which are reported to transport Na+ and/or Na+ and K+, and may play a central role in Na+ utilization and detoxification in plants. Based on the structural differences in the hydration shells of K+ and Na+, and by comparison with sodium channels, we present an ad hoc mechanistic model that can account for ion permeation through HKTs.  相似文献   

8.
The aim of this paper was to investigate whether Na+ accumulated in the vacuoles of barley roots can be replaced by K+, or else remain irreversibly trapped.Barley seedlings (Hordeum vulgare L. cv. Aramir) were grown for 2 days on nutrient solutions and then salinized over 24 h by a linear increase in NaCl concentration (50 mol · m−3). NaCl was replaced by an equimolar concentration of KCl and 1 day later the KCl concentration was gradually decreased over 23 hours. After this the plants were grown for 2 further days on basic nutrient solution. Plant material was harvested at each experimental step in order to measure plant growth and K+ and Na+ concentrations in vacuoles and tissues.The results from quantitated, energy dispersive X-ray analyses on frozen, hydrated vacuoles of the rhizodermls and 3 subsequent cortical cell rows, point to a proportional replacement of K+ by Na+ after NaCl stress. A replacement of Na+ by K+ was clearly found in the rhizodermal vacuoles after KCl treatment. Flame emission spectrometric data from corresponding root segments support these results.  相似文献   

9.
Total ion (Na+, K+, Ca2+, SO4 2? and Cl?) accumulation by plants, ion contents in plant tissues and ion secretion by salt glands on the surface of shoots of Tamarix ramosissima adapted to different soil salinity, namely low (0.06 mmol Na+/g soil), moderate (3.14–4.85 mmol Na+/g soil) and strong (7.56 mmol Na+/g soil) were analyzed. There are two stages of interrelated and complementary regulation of ion homeostasis in whole T. ramosissima plants: (1) regulation of ion influx into the plant from the soil and (2) changing the secretion efficiency of salt glands on shoots. The secretion efficiency of salt glands was appraised by the ratio of ion secretion to tissue ion content. Independent of soil salinity, the accumulation of K+ and Ca2+ was higher than the contents of these ions in the soil. Furthermore, the accumulation of K+, Ca2+ and SO4 2? ions by plants was maintained within a narrow range of values. Under low soil salinity, Na+ was accumulated, whereas under moderate and strong salinity, the influxes of Na+ were limited. However, under strong salinity, the accumulation of Na+ was threefold higher than that under low soil salinity. This led to a change in the Na+/K+ ratio (tenfold), an increase in the activity of salt glands (tenfold) and a reduction in plant growth (fivefold). An apparently high Na+/K+ ratio was the main factor determining over-active functioning of salt glands under strong salinity. Principal component analysis showed that K+ ions played a key role in ion homeostasis at all levels of salinity. Ca2+ played a significant role at low salinity, whereas Cl? and interrelated regulatory components (K+ and proline) played a role under strong salinity. Proline, despite its low concentration under strong salinity, was involved in the regulation of secretion by salt glands. Different stages and mechanisms of ion homeostasis were dominant in T. ramosissima plants adapted to different levels of salinity. These mechanisms facilitated the accumulation of Na+ in plants under low soil salinity, the limitation of Na+ under moderate salinity and the over-activation of Na+ secretion by salt glands under strong salinity, which are all necessary for maintaining ion homeostasis and water potential in the whole plant.  相似文献   

10.
Despite sequestration of toxins being a common coevolutionary response to plant defence in phytophagous insects, the macroevolution of the traits involved is largely unaddressed. Using a phylogenetic approach comprising species from four continents, we analysed the ability to sequester toxic cardenolides in the hemipteran subfamily Lygaeinae, which is widely associated with cardenolide-producing Apocynaceae. In addition, we analysed cardenolide resistance of their Na+/K+-ATPases, the molecular target of cardenolides. Our data indicate that cardenolide sequestration and cardenolide-resistant Na+/K+-ATPase are basal adaptations in the Lygaeinae. In two species that shifted to non-apocynaceous hosts, the ability to sequester was secondarily reduced, yet Na+/K+-ATPase resistance was maintained. We suggest that both traits evolved together and represent major coevolutionary adaptations responsible for the evolutionary success of lygaeine bugs. Moreover, specialization on cardenolides was not an evolutionary dead end, but enabled this insect lineage to host shift to cardenolide-producing plants from distantly related families.  相似文献   

11.
赵宏亮  倪细炉  侯晖  谢沁宓  程昊 《广西植物》2022,42(7):1150-1159
为揭示长苞香蒲(Typha domingensis)对盐生湿地生态系统中Na+和K+的吸收与转运特征,探讨长苞香蒲对盐生湿地的生态修复效果,该研究采用人工模拟盐生湿地的方法,设置CK(对照)、T1(浇灌100 mmol·L-1盐水)、T2(浇灌200 mmol·L-1盐水)及T3(浇灌300 mmol·L-1盐水)4种不同盐浓度的人工湿地生态系统,并分别于5月5日(开始盐胁迫处理,S0)、5月30日(S1)、6月30日(S2)和7月30日(S3)测量其株高和干重、植株地上与地下部分Na+和K+的含量以及底泥和水体中Na+和K+的含量以分析长苞香蒲对盐碱湿地的脱盐作用。结果表明:(1)各处理的长苞香蒲的株高和干重随着处理时间的延长呈增加趋势,但与CK相比,各处理生长量随盐浓度升高出现下降趋势。(2)高浓度盐处理(T3)使长苞香蒲的地上部分和地下部分的Na+分别增加了2.5...  相似文献   

12.
Salinity is a major abiotic stress factor limiting plant growth and productivity. One possible method to enhance plant salt-resistance is to compartmentalize sodium ions away from the cytosol. In the present work, a vacuolar Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana, was transferred into Populus × euramericana ‘Neva’ by Agrobacterium tumefaciens in order to enhance poplar salt-resistance. The results showed that the transgenic poplar were more resistant to NaCl than the wild-type (WT) in greenhouse condition. Compared with the WT, plant growth and photosynthetic capacity of the transgenic plants were enhanced, and the transgenic plants accumulated more Na+ and K+ in roots and leaves under the same NaCl condition, whereas malondialdehyde and relative electrical conductivity were lower. All of these properties of the transgenic poplar were likely to be a consequence of the overexpression of AtNHX1 caused Na+ sequestration in the vacuoles and improved K+ absorption, thus reducing their toxic effects. These results indicated overexpression of the AtNHX1 enhanced salt-resistance of poplar, and AtNHX1 played an important role in the compartmentation of Na+ into the vacuoles. Therefore, this study provides an effective way for improving salt resistance in trees.  相似文献   

13.
In the face of diminishing fresh water resources and increasing soil salinisation it is relevant to evaluate the potential of halophytic plant species to be cultivated in arid and semi-arid regions, where the productivity of most crop plants is markedly affected. Quinoa is a facultative halophytic plant species with the most tolerant varieties being able to cope with salinity levels as high as those present in sea water. This characteristic has aroused the interest in the species, and a number of studies have been performed with the aim of elucidating the mechanisms used by quinoa in order to cope with high salt levels in the soil at various stages of plant development. In quinoa key traits seem to be an efficient control of Na+ sequestration in leaf vacuoles, xylem Na+ loading, higher ROS tolerance, better K+ retention, and an efficient control over stomatal development and aperture. The purpose of this review is to give an overview on the existing knowledge of the salt tolerance of quinoa, to discuss the potential of quinoa for cultivation in salt-affected regions and as a basis for further research in the field of plant salt tolerance.  相似文献   

14.
(Na++K+)-ATPase is a target receptor of digitalis (cardiac glycoside) drugs. It has been demonstrated that the H1-H2 domain of the α-subunit of the (Na++K+)-ATPase is one of the digitalis drug interaction sites of the enzyme. Despite the extensive studies of the inhibitory effect of digitalis on the (Na++K+)-ATPase, the functional property of the H1-H2 domain of the enzyme and its role in regulating enzyme activity is not completely understood. Here we report a surprise finding: instead of inhibiting the enzyme, binding of a specific monoclonal antibody SSA78 to the H1-H2 domain of the (Na++K+)-ATPase elevates the catalytic activity of the enzyme. In the presence of low concentration of ouabain, monoclonal antibody SSA78 significantly protects enzyme function against ouabain-induced inhibition. However, higher concentration of ouabain completely inactivates the (Na++K+)-ATPase even in the presence of SSA78. These results suggest that the H1-H2 domain of the (Na++K+)-ATPase is capable of regulating enzyme function in two distinct ways for both ouabain-sensitive and -resistant forms of the enzyme: it increases the activity of the (Na++K+)-ATPase during its interaction with an activator; it also participates in the mechanism of digitalis or ouabain-induced inhibition of the enzyme. Understanding the dual activity of the H1-H2 domain will help better understand the structure-function relationships of the (Na++K+)-ATPase and the biological processes mediated by the enzyme.  相似文献   

15.
Soil salinity restricts plant growth and productivity. Na+ represents the major ion causing toxicity because it competes with K+ for binding sites at the plasma membrane. Inoculation with arbuscular mycorrhizal fungi (AMF) can alleviate salt stress in the host plant through several mechanisms. These may include ion selection during the fungal uptake of nutrients from the soil or during transfer to the host plant. AM benefits could be enhanced when native AMF isolates are used. Thus, we investigated whether native AMF isolated from an area with problems of salinity and desertification can help maize plants to overcome the negative effects of salinity stress better than non‐AM plants or plants inoculated with non‐native AMF. Results showed that plants inoculated with two out the three native AMF had the highest shoot dry biomass at all salinity levels. Plants inoculated with the three native AMF showed significant increase of K+ and reduced Na+ accumulation as compared to non‐mycorrhizal plants, concomitantly with higher K+/Na+ ratios in their tissues. For the first time, these effects have been correlated with regulation of ZmAKT2, ZmSOS1 and ZmSKOR genes expression in the roots of maize, contributing to K+ and Na+ homeostasis in plants colonized by native AMF.  相似文献   

16.

Adaptation to high salinity is achieved by cellular ion homeostasis which involves regulation of toxic sodium ion (Na+) and Chloride ion (Cl) uptake, preventing the transport of these ions to the aerial parts of the plants and vacuolar sequestration of these toxic ions. Ion transporters have long been known to play roles in maintaining ion homeostasis. Na+ enters the cell through various voltage dependent selective and non-selective ion channels. High Na+ concentration in the plasma membrane is balanced either by uptake of potassium ion (K+) by various potassium importing channels, by salt exclusion mechanism or by sequestration of Na+ in the vacuoles. Therefore, the role of high-affinity potassium transporter, the salt overly sensitive pathway, the most well-defined Na+ exclusion pathway that exports Na+ from cell into xylem and tonoplast localized cation transporters that compartmentalizes Na+ in vacuoles need to be studied in detail and applied to make the plant adaptable to saline soil. Knowledge on the regulation of expression of these transporters by the hormones, microRNAs and other non-coding RNAs can be utilized to manipulate the ion transport. Here, we reviewed paradigm of the ion transporters in salt stress signalling pathways from the recent and past studies aiding transformation of basic knowledge into biotechnological applications to generate engineered salt stress tolerant crops.

  相似文献   

17.
Ethylene has been reported to play an essential role in the response of Arabidopsis to salinity and K+ deficiency. It was proposed that plant's ability to maintain potassium (K+) and minimize sodium (Na+) in tissues of salinity plants is critical for salt tolerance (ST). It is still unclear how ethylene modulates plant ion homeostasis under saline occasions. We employed Arabidopsis wild type (Col-0), ethylene insensitive mutants (ein2-5 and ein3-1) and constitutive triple response mutant (ctr1-1) plants to compare their phenotypic and physiological responses to salinity. Ethephon applied to plants could convert quickly to ethylene and here was applied exogenously to Col-0 seedlings to validate ethylene role in salt response. We showed that ethylene insensitivity in ein2-5 or ein3-1 plants increased Arabidopsis salt sensitivity than in Col-0. However, the salinity-induced adverse effects on Chlorophyll a/b, photosystem II function (Fv/Fm) and redox state were largely amended in the ctr1-1 than in Col-0 plants with the severe salinity. The compatible solute sucrose and antioxidant system were also up-regulated to improve ST in ctr1-1 plants. The ethephon obviously alleviated the salinity-induced restriction in root length. The subsequent analysis on the Na+ and K+ homeostasis found that ethylene could help plant retain higher shoot or root K+ nutrition in the short- or long-term salt-stressed plants. However, the ethylene did not significantly alter sodium buildup and water relation in the salt-stressed plants. Our observations confirmed the key role of ethylene in improved plant ST and highlighted the ethylene ability to retain K+, rather than decreasing Na+, in shoots and roots to improve Arabidopsis ST.  相似文献   

18.
Summary To study the physiological role of the bidirectionally operating, furosemide-sensitive Na+/K+ transport system of human erythrocytes, the effect of furosemide on red cell cation and hemoglobin content was determined in cells incubated for 24 hr with ouabain in 145mm NaCl media containing 0 to 10mm K+ or Rb+. In pure Na+ media, furosemide accelerated cell Na+ gain and retarded cellular K+ loss. External K+ (5mm) had an effect similar to furosemide and markedly reduced the action of the drug on cellular cation content. External Rb+ accelerated the Na+ gain like K+, but did not affect the K+ retention induced by furosemide. The data are interpreted to indicate that the furosemide-sensitive Na+/K+ transport system of human erythrocytes mediates an equimolar extrusion of Na+ and K+ in Na+ media (Na+/K+ cotransport), a 1:1 K+/K+ (K+/Rb+) and Na+/Na+ exchange progressively appearing upon increasing external K+ (Rb+) concentrations to 5mm. The effect of furosemide (or external K+/Rb+) on cation contents was associated with a prevention of the cell shrinkage seen in pure Na+ media, or with a cell swelling, indicating that the furosemide-sensitive Na+/K+ transport system is involved in the control of cell volume of human erythrocytes. The action of furosemide on cellular volume and cation content tended to disappear at 5mm external K+ or Rb+. Thein vivo red cell K+ content was negatively correlated to the rate of furosemide-sensitive K+ (Rb+) uptake, and a positive correlation was seen between mean cellular hemoglobin content and furosemide-sensitive transport activity. The transport system possibly functions as a K+ and waterextruding mechanism under physiological conditiosin vivo. The red cell Na+ content showed no correlation to the activity of the furosemide-sensitive transport system.  相似文献   

19.
Reed plants (Phragmites australis Trinius) grow not only in fresh and brackish water areas but also in arid and high salinity regions. Reed plants obtained from a riverside (Utsunomiya) were damaged by 257 mM NaCl, whereas desert plants (Nanpi) were not. When the plants were grown under salt stress, the shoots of the Utsunomiya plants contained high levels of sodium and low levels of potassium, whereas the upper part of the Nanpi plants contained low levels of sodium and high levels of potassium. One month salt stress did not affect potassium contents in either Utsunomiya or Nanpi plants, but it did dramatically increase sodium contents only in the Utsunomiya plants. The ratio of K+ to Na+ was maintained at a high level in the upper parts of the Nanpi plants, whereas the ratio markedly decreased in the Utsunomiya plants in the presence of NaCl. Accumulation of Na+ in the roots and Na+ efflux from the roots were greater in the Nanpi plants than in the Utsunomiya plants. These results suggest that the salt tolerance mechanisms of Nanpi reed plants include an improved ability to take up K+ to prevent an influx of Na+ and an improved ability to exclude Na+ from the roots.  相似文献   

20.
Summary It is shown that the ouabain-resistant (OR) furosemide-sensitive K+(Rb+) transport system performs a net efflux of K+ in growing mouse 3T3 cells. This conclusion is based on the finding that under the same assay conditions the furosemidesensitive K+(Rb+) efflux was found to be two- to threefold higher than the ouabain-resistant furosemide-sensitive K+(Rb+) influx. The oubain-resistant furosemide-sensitive influxes of both22Na and86Rb appear to be Cl dependent, and the data are consistent with coupled unidirectional furosemide-sensitive influxes of Na+, K+ and Cl with a ratio of 1 1 2. However, the net efflux of K+ performed by this transport system cannot be coupled to a ouabain-resistant net efflux of Na+ since the unidirectional ouabain-resistant efflux of Na+ was found to be negligible under physiological conditions. This latter conclusion was based on the fact that practically all the Na+ efflux appears to be ouabainsensitive and sufficient to balance the Na+ influx under such steady-state conditions. Therefore, it is suggested that the ouabain-resistant furosemide-sensitive transport system in growing cells performs a facilitated diffusion of K+ and Na+, driven by their respective concentration gradients: a net K+ efflux and a net Na+ influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号