共查询到20条相似文献,搜索用时 0 毫秒
1.
The optimal schedules for breast cancer screening in terms of examination frequency and ages at examination are of practical interest. A decision-theoretic approach is explored to search for optimal cancer screening programs which should achieve maximum survival benefit while balancing the associated cost to the health care system. We propose a class of utility functions that account for costs associated with screening examinations and value of survival benefit under a non-stable disease model. We consider two different optimization criteria: optimize the number of screening examinations with equal screening intervals between exams but without a prefixed total cost; and optimize the ages at which screening should be given for a fixed total cost. We show that an optimal solution exists under each of the two frameworks. The proposed methods may consider women at different levels of risk for breast cancer so that the optimal screening strategies will be tailored according to a woman’s risk of developing the disease. Results of a numerical study are presented and the proposed models are illustrated with various data inputs. We also use the data inputs from the Health Insurance Plan of New York (HIP) and Canadian National Breast Screening Study (CNBSS) to illustrate the proposed models and to compare the utility values between the optimal schedules and the actual schedules in the HIP and CNBSS trials. Here, the utility is defined as the difference in cure rates between cases found at screening examinations and cases found between screening examinations while accounting for the cost of examinations, under a given screening schedule. 相似文献
2.
3.
Anne R. Diers Praveen K. Vayalil Claudia R. Oliva Corinne E. Griguer Victor Darley-Usmar Douglas R. Hurst Danny R. Welch Aimee Landar 《PloS one》2013,8(6)
Solid tumors are characterized by regions of low oxygen tension (OT), which play a central role in tumor progression and resistance to therapy. Low OT affects mitochondrial function and for the cells to survive, mitochondria must functionally adapt to low OT to maintain the cellular bioenergetics. In this study, a novel experimental approach was developed to examine the real-time bioenergetic changes in breast cancer cells (BCCs) during adaptation to OT (from 20% to <1% oxygen) using sensitive extracellular flux technology. Oxygen was gradually removed from the medium, and the bioenergetics of metastatic BCCs (MDA-MB-231 and MCF10CA clones) was compared with non-tumorigenic (MCF10A) cells. BCCs, but not MCF10A, rapidly responded to low OT by stabilizing HIF-1α and increasing HIF-1α responsive gene expression and glucose uptake. BCCs also increased extracellular acidification rate (ECAR), which was markedly lower in MCF10A. Interestingly, BCCs exhibited a biphasic response in basal respiration as the OT was reduced from 20% to <1%. The initial stimulation of oxygen consumption is found to be due to increased mitochondrial respiration. This effect was HIF-1α-dependent, as silencing HIF-1α abolished the biphasic response. During hypoxia and reoxygenation, BCCs also maintained oxygen consumption rates at specific OT; however, HIF-1α silenced BCC were less responsive to changes in OT. Our results suggest that HIF-1α provides a high degree of bioenergetic flexibility under different OT which may confer an adaptive advantage for BCC survival in the tumor microenvironment and during invasion and metastasis. This study thus provides direct evidence for the cross-talk between HIF-1α and mitochondria during adaptation to low OT by BCCs and may be useful in identifying novel therapeutic agents that target the bioenergetics of BCCs in response to low OT. 相似文献
4.
Chiun-Sheng Huang Ching-Hung Lin Yen-Shen Lu Chen-Yang Shen 《The Journal of steroid biochemistry and molecular biology》2010,118(4-5):300-303
Breast carcinoma is one of the most common cancers in women and is known to arise from a multifactorial process, the effect of reproductive risk factors strongly supporting a hormonal role in its etiology. Breast cancer in Asia is characterized by a lower incidence than in Western populations, but is still the leading type of cancer in Asian women, and a significant increasing tread indicates that it is an issue of particular public health importance. Asian breast cancer is characterized by early tumor onset, showing a relatively younger median age at diagnosis. Recently, scientists began to explore the tumorigenic mechanisms underlying breast cancer formation at the molecular level. Both a candidate-gene approach and genome-wide association studies have yielded crucial insights into breast cancer susceptibility genes initiating breast tumorigenesis. As expected, ethnic/racial variation in the genotypic frequency of these genes results in differences in breast cancer incidence in different populations. Furthermore, the question of how important these genes are in Asian breast cancer remains to be explored.It has been demonstrated that gene expression profiles and gene sets are prognostic and predictive for patients with breast cancer. Originally, due to its early onset, it was speculated that Asian breast cancer would have a higher frequency of the basal-like subtype of breast cancer, a molecular subtype characterized by poor differentiation, resulting in a relatively poor progression; however, recent findings do not support this speculation. The frequency of the luminal-A subtype of breast cancer, characterized by estrogen receptor expression, is similar to that in breast cancer in Caucasian, supporting the usefulness of hormone-based therapy in Asian breast cancer. 相似文献
5.
Concetta Saponaro Andrea Malfettone Girolamo Ranieri Katia Danza Giovanni Simone Angelo Paradiso Anita Mangia 《PloS one》2013,8(1)
Angiogenesis, which plays an important role in tumor growth and progression of breast cancer, is regulated by a balance between pro- and anti-angiogenic factors. Expression of vascular endothelial growth factor (VEGF) is up-regulated during hypoxia by hypoxia-inducible factor-1α (HIF-1α). It is known that there is an interaction between HIF-1α and BRCA1 carrier cancers, but little has been reported about angiogenesis in BRCA1-2 carrier and BRCAX breast cancers. In this study, we investigated the expression of VEGF and HIF-1α and microvessel density (MVD) in 26 BRCA1-2 carriers and 58 BRCAX compared to 77 sporadic breast cancers, by immunohistochemistry. VEGF expression in BRCA1-2 carriers was higher than in BRCAX cancer tissues (p = 0.0001). Furthermore, VEGF expression was higher in both BRCA1-2 carriers and BRCAX than the sporadic group (p<0.0001). VEGF immunoreactivity was correlated with poor tumor grade (p = 0.0074), hormone receptors negativity (p = 0.0206, p = 0.0002 respectively), and MIB-1-labeling index (p = 0.0044) in familial cancers (BRCA1-2 and BRCAX). The percentage of nuclear HIF-1α expression was higher in the BRCA1-2 carriers than in BRCAX cancers (p<0.05), and in all familial than in sporadic tumor tissues (p = 0.0045). A higher MVD was observed in BRCA1-2 carrier than in BRCAX and sporadic cancer tissues (p = 0.002, p = 0.0001 respectively), and in all familial tumors than in sporadic tumors (p = 0.01). MVD was positively related to HIF-1α expression in BRCA1-2 carriers (r = 0.521, p = 0.006), and, in particular, we observed a highly significant correlation in the familial group (r = 0.421, p<0.0001). Our findings suggest that angiogenesis plays a crucial role in BRCA1-2 carrier breast cancers. Prospective studies in larger BRCA1-2 carrier series are needed to improve the best therapeutic strategies for this subgroup of breast cancer patients. 相似文献
6.
7.
8.
9.
Megan Agajanian Anaamika Campeau Malachia Hoover Alexander Hou Daniel Brambilla Sa La Kim Richard L. Klemke Jonathan A. Kelber 《PloS one》2015,10(8)
Transforming Growth Factor β (TGFβ) has dual functions as both a tumor suppressor and a promoter of cancer progression within the tumor microenvironment, but the molecular mechanisms by which TGFβ signaling switches between these outcomes and the contexts in which this switch occurs remain to be fully elucidated. We previously identified PEAK1 as a new non-receptor tyrosine kinase that associates with the cytoskeleton, and facilitates signaling of HER2/Src complexes. We also showed PEAK1 functions downstream of KRas to promote tumor growth, metastasis and therapy resistance using preclinical in vivo models of human tumor progression. In the current study, we analyzed PEAK1 expression in human breast cancer samples and found PEAK1 levels correlate with mesenchymal gene expression, poor cellular differentiation and disease relapse. At the cellular level, we also observed that PEAK1 expression was highest in mesenchymal breast cancer cells, correlated with migration potential and increased in response to TGFβ-induced epithelial-mesenchymal transition (EMT). Thus, we sought to evaluate the role of PEAK1 in the switching of TGFβ from a tumor suppressing to tumor promoting factor. Notably, we discovered that high PEAK1 expression causes TGFβ to lose its anti-proliferative effects, and potentiates TGFβ-induced proliferation, EMT, cell migration and tumor metastasis in a fibronectin-dependent fashion. In the presence of fibronectin, PEAK1 caused a switching of TGFβ signaling from its canonical Smad2/3 pathway to non-canonical Src and MAPK signaling. This report is the first to provide evidence that PEAK1 mediates signaling cross talk between TGFβ receptors and integrin/Src/MAPK pathways and that PEAK1 is an important molecular regulator of TGFβ-induced tumor progression and metastasis in breast cancer. Finally, PEAK1 overexpression/upregulation cooperates with TGFβ to reduce breast cancer sensitivity to Src kinase inhibition. These findings provide a rational basis to develop therapeutic agents to target PEAK1 expression/function or upstream/downstream pathways to abrogate breast cancer progression. 相似文献
10.
11.
Corsetto PA Cremona A Montorfano G Jovenitti IE Orsini F Arosio P Rizzo AM 《Cell biochemistry and biophysics》2012,64(1):45-59
Epidemiologic and experimental studies suggest that dietary fatty acids influence the development and progression of breast cancer. However, no clear data are present in literature that could demonstrate how n?-?3 PUFA can interfere with breast cancer growth. It is suggested that these fatty acids might change the structure of cell membrane, especially of lipid rafts. During this study we treated MCF-7 and MDA-MB-231 cells with AA, EPA, and DHA to assess if they are incorporated in lipid raft phospholipids and are able to change chemical and physical properties of these structures. Our data demonstrate that PUFA and their metabolites are inserted with different yield in cell membrane microdomains and are able to alter fatty acid composition without decreasing the total percentage of saturated fatty acids that characterize these structures. In particular in MDA-MB-231 cells, that displays the highest content of Chol and saturated fatty acids, we observed the lowest incorporation of DHA, probably for sterical reasons; nevertheless DHA was able to decrease Chol and SM content. Moreover, PUFA are incorporated in breast cancer lipid rafts with different specificity for the phospholipid moiety, in particular PUFA are incorporated in PI, PS, and PC phospholipids that may be relevant to the formation of PUFA metabolites (prostaglandins, prostacyclins, leukotrienes, resolvines, and protectines) of phospholipids deriving second messengers and signal transduction activation. The bio-physical changes after n?-?3 PUFA incubation have also been highlighted by atomic force microscopy. In particular, for both cell lines the DHA treatment produced a decrease of the lipid rafts in the order of about 20-30?%. It is worth noticing that after DHA incorporation lipid rafts exhibit two different height ranges. In fact, some lipid rafts have a higher height of 6-6.5?nm. In conclusion n?-?3 PUFA are able to modify lipid raft biochemical and biophysical features leading to decrease of breast cancer cell proliferation probably through different mechanisms related to acyl chain length and unsaturation. While EPA may contribute to cell apoptosis mainly through decrease of AA concentration in lipid raft phospholipids, DHA may change the biophysical properties of lipid rafts decreasing the content of cholesterol and probably the distribution of key proteins. 相似文献
12.
13.
Yue Gong Peng Ji Wei Sun Yi-Zhou Jiang Xin Hu Zhi-Ming Shao 《Translational oncology》2018,11(6):1334-1342
INTRODUCTION: The objective of current study was to develop and validate comprehensive nomograms for predicting the survival of young women with breast cancer. METHODS: Women aged <40 years diagnosed with invasive breast cancer between 1990 and 2010 were selected from the Surveillance, Epidemiology, and End Results database and randomly divided into training (n = 12,465) and validation (n = 12,424) cohorts. A competing-risks model was used to estimate the probability of breast cancer–specific survival (BCSS). We identified and integrated significant prognostic factors for overall survival (OS) and BCSS to construct nomograms. The performance of the nomograms was assessed with respect to calibration, discrimination, and risk group stratification. RESULTS: The entire cohort comprised 24,889 patients. The 5- and 10-year probabilities of breast cancer–specific mortality were 11.6% and 20.5%, respectively. Eight independent prognostic factors for both OS and BCSS were identified and integrated for the construction of the nomograms. The calibration curves showed optimal agreement between the predicted and observed probabilities. The C-indexes of the nomograms in the training cohort were higher than those of the TNM staging system for predicting OS (0.724 vs 0.694; P < .001) and BCSS (0.733 vs 0.702; P < .001). Additionally, significant differences in survival were observed in patients stratified into different risk groups within respective TNM categories. CONCLUSIONS: We developed and validated novel nomograms that can accurately predict OS and BCSS in young women with breast cancer. These nomograms may help clinicians in making decisions on an individualized basis. 相似文献
14.
A recently described Erpetopus trackway bearing unusual claw and belly-drag marks ostensibly indicates an obligatory sprawled posture and belly-walk in the locomotion of small captorhinids. Here, the ichnology of the blue-tongued skink (Tiliqua scincoides) is investigated in order to identify features of a trackway produced by a lizard in continuous belly-walk. Comparisons between T. scincoides and Erpetopus tracks tested whether the locomotory pattern observed for T. scincoides resembles that of small captorhinid track makers. Characteristic features of the T. scincoides track include: (1) a belly-dragging mark, (2) claw scratch marks produced during the early stance phase, and (3) claw drag marks produced by the forelimb during the swing phase. Trackway parameters did not correlate with track maker velocity, rendering inference of velocity for belly-dragging track makers problematic. This result was probably caused by increased substrate influence on locomotor speed because of belly contact with the ground. The track characteristics of T. scincoides match those recently described for Erpetopus and thus corroborate the notion of a similar pattern of locomotion for small captorhinids. 相似文献
15.
Matrix type transdermal films of donepezil (DNP) as an alternative delivery approach was designed to improve patient compliance to Alzheimer disease treatment. Sodium alginate, a natural polysaccharide, was used as matrix-forming agent in the optimization of transdermal films. Propylene glycol and dl-limonene was added into films as a plasticizer and permeation enhancer, respectively. As well as mechanical strength and bioadhesiveness of optimized transdermal films of DNP, the impact of dl-limonene concentration in films on DNP in vitro permeation across pig skin was assessed. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) measurements were carried out to examine the effects of enhancer on in vitro conformational order of the stratum corneum intercellular lipids following permeation study. Results showed that transdermal formulations of DNP were suitable due to both mechanical and bioadhesive features of the films. In vitro skin permeation study indicated that dl-limonene at a concentration of 3% was optimum with high drug flux. ATR-FTIR results confirmed a more fluidized stratum corneum lipid state in the presence of dl-limonene, indicating its permeation enhancement effect. Regarding to achieve therapeutic levels of DNP, it seems to be feasible deliver DNP with transdermal films for the management of Alzheimer disease.KEY WORDS: Alzheimer disease, donepezil, limonene, permeation enhancement, transdermal film 相似文献
16.
Elisa Boldrin Enrica Rumiato Matteo Fassan Rocco Cappellesso Massimo Rugge Vanna Chiarion-Sileni Alberto Ruol Rita Alfieri Matteo Cagol Carlo Castoro Alberto Amadori Daniela Saggioro 《PloS one》2015,10(1)
BackgroundDevelopment of novel therapeutic drugs and regimens for cancer treatment has led to improvements in patient long-term survival. This success has, however, been accompanied by the increased occurrence of second primary cancers. Indeed, patients who received regional radiotherapy for Hodgkin’s Lymphoma (HL) or breast cancer may develop, many years later, a solid metachronous tumor in the irradiated field. Despite extensive epidemiological studies, little information is available on the genetic changes involved in the pathogenesis of these solid therapy-related neoplasms.MethodsUsing microsatellite markers located in 7 chromosomal regions frequently deleted in sporadic esophageal cancer, we investigated loss of heterozygosity (LOH) and microsatellite instability (MSI) in 46 paired (normal and tumor) samples. Twenty samples were of esophageal carcinoma developed in HL or breast cancer long-term survivors: 14 squamous cell carcinomas (ESCC) and 6 adenocarcinomas (EADC), while 26 samples, used as control, were of sporadic esophageal cancer (15 ESCC and 11 EADC).ResultsWe found that, though the overall LOH frequency at the studied chromosomal regions was similar among metachronous and sporadic tumors, the latter exhibited a statistically different higher LOH frequency at 17q21.31 (p = 0.018). By stratifying for tumor histotype we observed that LOH at 3p24.1, 5q11.2 and 9p21.3 were more frequent in ESCC than in EADC suggesting a different role of the genetic determinants located nearby these regions in the development of the two esophageal cancer histotypes.ConclusionsAltogether, our results strengthen the genetic diversity among ESCC and EADC whether they occurred spontaneously or after therapeutic treatments. The presence of histotype-specific alterations in esophageal carcinoma arisen in HL or breast cancer long-term survivors suggests that their transformation process, though the putative different etiological origin, may retrace sporadic ESCC and EADC carcinogenesis. 相似文献
17.
Sotiris Psilodimitrakopoulos Valerie Petegnief Nuria de?Vera Oscar Hernandez David Artigas Anna?M. Planas Pablo Loza-Alvarez 《Biophysical journal》2013,104(5):968-975
Neuronal death can be preceded by progressive dysfunction of axons. Several pathological conditions such as ischemia can disrupt the neuronal cytoskeleton. Microtubules are basic structural components of the neuronal cytoskeleton that regulate axonal transport and neuronal function. Up-to-date, high-resolution observation of microtubules in living neuronal cells is usually accomplished using fluorescent-based microscopy techniques. However, this needs exogenous fluorescence markers to produce the required contrast. This is an invasive procedure that may interfere with the microtubule dynamics. In this work, we show, for the first time to our knowledge, that by using the endogenous (label-free) contrast provided by second harmonic generation (SHG) microscopy, it is possible to identify early molecular changes occurring in the microtubules of living neurons under ischemic conditions. This is done by measuring the intensity modulation of the SHG signal as a function of the angular rotation of the incident linearly polarized excitation light (technique referred to as PSHG). Our experiments were performed in microtubules from healthy control cultured cortical neurons and were compared to those upon application of several periods of oxygen and glucose deprivation (up to 120 min) causing ischemia. After 120-min oxygen and glucose deprivation, a change in the SHG response to the polarization was measured. Then, by using a three-dimensional PSHG biophysical model, we correlated this finding with the structural changes occurring in the microtubules under oxygen and glucose deprivation. To our knowledge, this is the first study performed in living neuronal cells that is based on direct imaging of axons and that provides the means of identifying the early symptoms of ischemia. Live observation of this process might bring new insights into understanding the dynamics and the mechanisms underlying neuronal degeneration or mechanisms of protection or regeneration. 相似文献
18.
Background and Aims
Floral symmetry presents two main states in angiosperms, actinomorphy (polysymmetry or radial symmetry) and zygomorphy (monosymmetry or bilateral symmetry). Transitions from actinomorphy to zygomorphy have occurred repeatedly among flowering plants, possibly in coadaptation with specialized pollinators. In this paper, the rules controlling the evolution of floral symmetry were investigated to determine in which architectural context zygomorphy can evolve.Methods
Floral traits potentially associated with perianth symmetry shifts in Asteridae, one of the major clades of the core eudicots, were selected: namely the perianth merism, the presence and number of spurs, and the androecium organ number. The evolution of these characters was optimized on a composite tree. Correlations between symmetry and the other morphological traits were then examined using a phylogenetic comparative method.Key Results
The analyses reveal that the evolution of floral symmetry in Asteridae is conditioned by both androecium organ number and perianth merism and that zygomorphy is a prerequisite to the emergence of spurs.Conclusions
The statistically significant correlation between perianth zygomorphy and oligandry suggests that the evolution of floral symmetry could be canalized by developmental or spatial constraint. Interestingly, the evolution of polyandry in an actinomorphic context appears as an alternative evolutionary pathway to zygomorphy in Asteridae. These results may be interpreted either in terms of plant–pollinator adaptation or in terms of developmental or physical constraints. The results are discussed in relation to current knowledge about the molecular bases underlying floral symmetry.Key words: Floral symmetry, architectural constraints, Asteridae, comparative analysis, composite tree, correlated evolution, evolutionary scenario 相似文献19.
Frits A. de Wolf 《Bioscience reports》1991,11(5):275-284
The binding of doxorubicin to large unilamellar vesicles consisting of cardiolipin or other anionic phospholipids was analyzed in terms of the local drug concentration at the membrane surface, according to the Gouy-Chapman theory. The analysis suggests strong positive binding cooperativity. Part of the drug binds in the uncharged form. The affinity for cardiolipin and other anionic phospholipids is comparable. A binding level of 0.5 doxorubicin per lipid-phosphorus is reached when the local concentration of free doxorubicin monomer-equivalents at the membrane surface is about 0.2–0.7 mM. This contrasts with earlier findings indicating a 300–1000 fold higher affinity for cardiolipin. The present analysis provides an explanation for this apparent discrepancy. 相似文献
20.
Maria E. C. Sandberg Per Hall Mikael Hartman Anna L. V. Johansson Sandra Eloranta Alexander Ploner Kamila Czene 《PloS one》2012,7(10)