首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Group II intron homing in yeast mitochondria is initiated at active target sites by activities of intron-encoded ribonucleoprotein (RNP) particles, but is completed by competing recombination and repair mechanisms. Intron aI1 transposes in haploid cells at low frequency to target sites in mtDNA that resemble the exon 1-exon 2 (E1/E2) homing site. This study investigates a system in which aI1 can transpose in crosses (i.e., in trans). Surprisingly, replacing an inefficient transposition site with an active E1/E2 site supports <1% transposition of aI1. Instead, the ectopic site was mainly converted to the related sequence in donor mtDNA in a process we call "abortive transposition." Efficient abortive events depend on sequences in both E1 and E2, suggesting that most events result from cleavage of the target site by the intron RNP particles, gapping, and recombinational repair using homologous sequences in donor mtDNA. A donor strain that lacks RT activity carries out little abortive transposition, indicating that cDNA synthesis actually promotes abortive events. We also infer that some intermediates abort by ejecting the intron RNA from the DNA target by forward splicing. These experiments provide new insights to group II intron transposition and homing mechanisms in yeast mitochondria.  相似文献   

2.
It has been previously suggested that self-splicing of group II introns starts with a nucleophilic attack of the 2' OH group from the branchpoint adenosine on the 5' splice junction. To investigate the sequences governing the specificity of this attack, a series of Bal31 nuclease deletion mutants was constructed in which progressively larger amounts of 5' exon have been removed starting from its 5' end. The ability of mutant RNAs to carry out self-splicing in vitro was studied. Involvement of 5' exon sequences in self-splicing activity is indicated by the fact that a mutant in which as many as 18 nucleotides of 5' exon remain is seriously disturbed in splicing, while larger deletions eliminate splicing entirely. Mutants containing a truncated 5' exon form aberrant RNAs. One of these is a 425-nucleotide RNA containing the 5' exon as well as sequences of the 5' part of the intron. Its 3' end maps at position 374 of the 887-nucleotide intron. The other is a less abundant lariat RNA probably originating from the remainder of the intron linked to the 3' exon. We interpret this large dependence of reactivity of the intron on 5' exon and adjoining intron sequences as evidence for base-pairing interactions between the exon and parts of the intron, leading to an RNA folding necessary for splicing. Possible folding models are discussed.  相似文献   

3.
The terminal intron (bI2) of the yeast mitochondrial cytochrome b gene is a group I intron capable of self-splicing in vitro at high concentrations of Mg2+. Excision of bI2 in vivo, however, requires a protein encoded by the nuclear gene CBP2. The CBP2 protein has been partially purified from wild-type yeast mitochondria and shown to promote splicing at physiological concentrations of Mg2+. The self-splicing and protein-dependent splicing reactions utilized a guanosine nucleoside cofactor, the hallmark of group I intron self-splicing reactions. Furthermore, mutations that abolished the autocatalytic activity of bI2 also blocked protein-dependent splicing. These results indicated that protein-dependent excision of bI2 is an RNA-catalyzed process involving the same two-step transesterification mechanism responsible for self-splicing of group I introns. We propose that the CBP2 protein binds to the bI2 precursor, thereby stabilizing the catalytically active structure of the RNA. The same or a similar RNA structure is probably induced by high concentrations of Mg2+ in the absence of protein. Binding of the CBP2 protein to the unspliced precursor was supported by the observation that the protein-dependent reaction was saturable by the wild-type precursor. Protein-dependent splicing was competitively inhibited by excised bI2 and by a splicing-defective precursor with a mutation in the 5' exon near the splice site but not by a splicing-defective precursor with a mutation in the core structure. Binding of the CBP2 protein to the precursor RNA had an effect on the 5' splice site helix, as evidenced by suppression of the interaction of an exogenous dinucleotide with the internal guide sequence.  相似文献   

4.
In mitochondria of flowering plants the nad5 open reading frame is assembled from five exons via two conventional cis-splicing and two trans-splicing events. Trans-splicing between exons c and d in wheat, petunia and Arabidopsis involves a bipartite group II intron structure, while in Oenothera a large portion of intron domains I–IV is missing from the major genomic locus. This intron region has been lost downstream of exon c and is now found in a distant genomic region. Intragenomic recombination across an 11 nucleotide sequence has separated these intron parts, which now have to be reassembled from three independent RNA precursors. This organisation coexists with highly substoichiometric copy numbers of the bipartite intron arrangement, consistent with an evolutionary origin of the tripartite intron by genomic disruption. Received: 28 August 1996 / Accepted: 11 December 1996  相似文献   

5.
6.
7.
I G Macreadie  R M Scott  A R Zinn  R A Butow 《Cell》1985,41(2):395-402
The optional 1143 bp intron in the yeast mitochondrial 21S rRNA gene (omega +) is nearly quantitatively inserted in genetic crosses into 21S rRNA alleles that lack it (omega -). The intron contains an open reading frame that can encode a protein of 235 amino acids, but no function has been ascribed to this sequence. We previously found an in vivo double-strand break in omega - DNA at or close to the intron insertion site only in zygotes of omega + X omega - crosses that appears with the same kinetics as intron insertion. We now show that mutations in the intron open reading frame that would alter the translation product simultaneously inhibit nonreciprocal omega recombination and the in vivo double-strand break in omega - DNA. These results provide evidence that the open reading frame encodes a protein required for intron transposition and support the role of the double-strand break in the process.  相似文献   

8.
The terminal intron of the mitochondrial cob gene of Saccharomyces cerevisiae can undergo autocatalytic splicing in vitro. Efficient splicing of this intron required a high concentration of monovalent ion (1 M). We found that at a high salt concentration this intron was very active and performed many of the reactions described for other group I introns. The rate of the splicing reaction was dependent on the choice of the monovalent ion; the reaction intermediate, the intron-3' exon molecule, accumulated in NH4Cl but not in KCl. In addition, the intron was more reactive in KCl, accumulating in two different circular forms: one cyclized at the 5' intron boundary and the other at 236 nucleotides from the 5' end. These circular forms were able to undergo the opening and recyclization reactions previously described for the Tetrahymena rRNA intron. Cleavage of the 5' exon-intron boundary by the addition of GTP did not require the 3' terminus of the intron and the downstream exon. An anomalous guanosine addition at the 3' exon and at the middle of the intron was also detected. Hence, this intron, which requires a functional protein to splice in vivo, demonstrated a full spectrum of characteristic reactions in the absence of proteins.  相似文献   

9.
10.
The group II intron bI1, the first intron of the mitochondrial cytochrome b gene in yeast is self-splicing in vitro. Genetic evidence suggests that trans-acting factors are required for in vivo splicing of this intron. In accordance with these findings, we present in vitro data showing that splicing of bI1 under physiological conditions depends upon the presence of proteins of a mitochondrial lysate. ATP is an essential component is this reaction. Overexpression of the nuclear-encoded DEAD box protein pMSS-116 results in a marked increase in the ATP-dependent splicing activity of the extract, suggesting that pMSS116 may play an important role in splicing of bI1.  相似文献   

11.
The Pet54p protein is an archetypical example of a dual functioning (‘moonlighting’) protein: it is required for translational activation of the COX3 mRNA and splicing of the aI5β group I intron in the COX1 pre-mRNA in Saccharomyces cerevisiae mitochondria (mt). Genetic and biochemical analyses in yeast are consistent with Pet54p forming a complex with other translational activators that, in an unknown way, associates with the 5′ untranslated leader (UTL) of COX3 mRNA. Likewise, genetic analysis suggests that Pet54p along with another distinct set of proteins facilitate splicing of the aI5β intron, but the function of Pet54 is, also, obscure. In particular, it remains unknown whether Pet54p is a primary RNA-binding protein that specifically recognizes the 5′ UTL and intron RNAs or whether its functional specificity is governed in other ways. Using recombinant protein, we show that Pet54p binds with high specificity and affinity to the aI5β intron and facilitates exon ligation in vitro. In addition, Pet54p binds with similar affinity to the COX3 5′ UTL RNA. Competition experiments show that the COX3 5′UTL and aI5β intron RNAs bind to the same or overlapping surface on Pet54p. Delineation of the Pet54p-binding sites by RNA deletions and RNase footprinting show that Pet54p binds across a similar length sequence in both RNAs. Alignment of the sequences shows significant (56%) similarity and overlap between the binding sites. Given that its role in splicing is likely an acquired function, these data support a model in which Pet54p's splicing function may have resulted from a fortuitous association with the aI5β intron. This association may have lead to the selection of Pet54p variants that increased the efficiency of aI5β splicing and provided a possible means to coregulate COX1 and COX3 expression.  相似文献   

12.
Group II introns are autocatalytic RNAs which self-splice in vitro. However, in vivo additional protein factors might be involved in the splicing process. We used an affinity chromatography method called 'StreptoTag' to identify group II intron binding proteins from Saccharomyces cerevisiae. This method uses a hybrid RNA consisting of a streptomycin-binding affinity tag and the RNA of interest, which is bound to a streptomycin column and incubated with yeast protein extract. After several washing steps the bound RNPs are eluted by addition of streptomycin. The eluted RNPs are separated and the proteins identified by mass-spectrometric analysis. Using crude extract from yeast in combination with a substructure of the bl1 group II intron (domains IV-VI) we were able to identify four glycolytic enzymes; glucose-6-phosphate isomerase (GPI), 3-phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triosephosphate isomerase (TPI). From these proteins GAPDH increases in vitro splicing of the bl1 group II intron by up to three times. However, in vivo GAPDH is not a group II intron-splicing factor, since it is not localised in yeast mitochondria. Therefore, the observed activity reflects an unexpected property of GAPDH. Band shift experiments and UV cross linking demonstrated the interaction of GAPDH with the group II intron RNA. This novel activity expands the reaction repertoire of GAPDH to a new RNA species.  相似文献   

13.
The Cbp2 protein is encoded in the nucleus and is required for the splicing of the terminal intron of the mitochondrial COB gene in Saccharomyces cerevisiae . Using a yeast strain that lacks this intron but contains a related group I intron in the precursor of the large ribosomal RNA, we have determined that Cbp2 protein is also required for the normal accumulation of 21S ribosomal RNA in vivo . Such strains bearing a deletion of the CBP2 gene adapt slowly to growth in glycerol/ethanol media implying a defect in derepression. At physiologic concentrations of magnesium, Cbp2 stimulates the splicing of the ribosomal RNA intron in vitro . Nevertheless, Cbp2 is not essential for splicing of this intron in mitochondria nor is it required in vitro at magnesium concentrations >5 mM. A similar intron exists in the large ribosomal RNA (LSU) gene of Saccharomyces douglasii . This intron does need Cbp2 for catalytic activity in physiologic magnesium. Similarities between the LSU introns and COB intron 5 suggest that Cbp2 may recognize conserved elements of the these two introns, and protein-induced UV crosslinks occur in similar sites in the substrate and catalytic domains of the RNA precursors.  相似文献   

14.
Plant mitochondrial group II introns do not all possess hallmark ribozymic features such as the bulged adenosine involved in lariat formation. To gain insight into their splicing pathways, we have examined the physical form of excised introns in germinating wheat embryos. Using RT–PCR and cRT–PCR, we observed conventional lariats consistent with a two-step transesterification pathway for introns such as nad2 intron 4, but this was not the case for the cox2 intron or nad1 intron 2. For cox2, we detected full-length linear introns, which possess non-encoded 3′terminaladenosines, as well as heterogeneous circular introns, which lack 3′ nucleotide stretches. These observations are consistent with hydrolytic splicing followed by polyadenylation as well as an in vivo circularization pathway, respectively. The presence of both linear and circular species in vivo is supported by RNase H analysis. Furthermore, the nad1 intron 2, which lacks a bulged nucleotide at the branchpoint position, comprised a mixed population of precisely full-length molecules and circular ones which also include a short, discrete block of non-encoded nucleotides. The presence of these various linear and circular forms of excised intron molecules in plant mitochondria points to multiple novel group II splicing mechanisms in vivo.  相似文献   

15.
The excised group II intron bI1 from Saccharomyces cerevisiae can act as a ribozyme catalysing various chemical reactions with different substrate RNAs in vitro . Recently, we have described an editing-like RNA polymerization reaction catalysed by the bI1 intron lariat that proceeds in the 3'-->5'direction. Here we show that the bI1 lariat RNA can also catalyse successive deoxyribonucleotide polymerization reactions on exogenous substrate molecules. The basic mechanism of the reaction involved interacting cycles between an alternative version of partial reverse splicing (lariat charging) and canonical forward splicing (lariat discharging by exon ligation). With an overall chain growth in the 3'-->5' direction, the 5' exon RNAs (IBS1dN) were elongated by successive insertion of deoxyribonucleotides derived from single deoxyribonucleotide substitutions (dA, dG, dC or dT). All four deoxyribonucleotides were used as substrates, although with different efficiencies. Our findings extend the catalytic repertoire of group II intron RNAs not only by a novel DNA polymerization activity, but also by a DNA-DNA ligation capacity, supporting the idea that ribozymes might have been part of the first primordial polymerization machinery for both RNA and DNA.  相似文献   

16.
Cellular localization of group IIA phospholipase A2 in rats.   总被引:2,自引:0,他引:2  
It has been known that group II phospholipase A2 (PLA2) mRNA and protein are present in the homogenates of the spleen, lung, liver, and kidney in normal rats, but the cellular origin of this enzyme has not been yet identified. At present, five subtypes of group II PLA2 have been identified in mammals. Antibodies or mRNA probes previously used for detecting group II PLA2 need to be evaluated to identify the subtypes of group II PLA2. In this study we tried to identify group IIA PLA2-producing cells in normal rat tissues by in situ hybridization (ISH) using an almost full-length RNA probe for rat group IIA enzyme. Group IIA PLA2 mRNA was detected in megakaryocytes in the spleen and Paneth cells in the intestine by ISH. These cells were also immunopositive for an antibody raised against group IIA PLA(2) isolated from rat platelets. Group IIA PLA2 mRNA-positive cells were not detected in lung, liver, kidney, and pancreas. Under normal conditions, group IIA PLA2-producing cells are splenic megakaryocytes and intestinal Paneth cells in rats.  相似文献   

17.
Excised group II introns in yeast mitochondria appear as covalently closed circles under the electron microscope. We show that these circular molecules are branched and resemble the lariats arising through splicing of nuclear pre-mRNAs in yeast and higher eukaryotes. One member of this intron class (aI5c in the gene for cytochrome c oxidase subunit I) is capable of self-splicing in vitro, giving correct exon-exon ligation and resulting in the appearance of both linear and lariat forms of the excised intron. Nuclease digestion of the latter molecules reveals the presence of a complex oligonucleotide with the probable structure AGU, which thus resembles the branch point formed in the spliceosome-dependent reactions undergone by nuclear pre-mRNAs. Unlike group I introns, this group II intron is not demonstrably dependent on GTP for self-splicing and circularization of the isolated, linear intron is not observed. A model accounting for these observations is presented.  相似文献   

18.
A comparative database of group I intron structures.   总被引:13,自引:3,他引:10       下载免费PDF全文
We have created a database of comparatively derived group I intron secondary structure diagrams. This collection currently contains a broad sampling of phylogenetically and structurally similar and diverse structures from over 200 publicly available intron sequences. As more group I introns are sequenced and added to the database, we anticipate minor refinements in these secondary structure diagrams. These diagrams are directly accessible by computer as well as from the authors.  相似文献   

19.
The second intron (bi2) of the cyt b gene from related Saccharomyces species has an extraordinarily conserved sequence and can have different functions in wild-type cells. The protein encoded by the S. cerevisiae intron functions as a maturase to promote intron splicing, while the homologous S. capensis intron encodes a bifunctional protein that acts both as a maturase and as a homing endonuclease (I-ScaI) promoting intron mobility. The protein encoded by intron bi2 belongs to a large gene family characterized by the presence of two conserved LAGLIDADG motifs (P1 and P2). In this study, we analysed a set of splicing-deficient mutants of the S. cerevisiae intron bi2 that carry non-directed mutations affecting the maturase activity, and a set of directed missense mutations introduced into the bifunctional protein encoded by the S. capensis intron. Analysis of these mutations has allowed identification of the residues in the conserved P1 and P2 motifs which are crucial for splicing and homing activities. Moreover, several mutations which are located in the C-terminal part of the protein have been found to affect both functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号