首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

2.
Autism encompasses a wide spectrum of disorders arising during brain development. Recent studies reported that sequence polymorphisms in neuroligin-3 (NLGN3) and neuroligin-4 (NLGN4) genes have been linked to autism spectrum disorders indicating neuroligin genes as candidate targets in brain disorders. We have characterized a single mutation found in two affected brothers that substituted Arg451 to Cys in NL3. Our data show that the exposed Cys causes retention of the protein in the endoplasmic reticulum (ER) when expressed in HEK-293 cells. To examine whether the introduction of a Cys in the C-terminal region of other alpha/beta-hydrolase fold proteins could promote the same cellular phenotype, we made homologous mutations in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and found a similar processing deficiency and intracellular retention (De Jaco et al., J Biol Chem. 2006, 281:9667-76). NL3, AChE and BChE mutant proteins are recognized as misfolded in the ER, and degraded via the proteasome pathway. A 2D electrophoresis coupled with mass spectrometry based approach was used to analyze proteins co-immunoprecipitating with NL3 and show differential expression of factors interacting with wild type and mutant NL3. We identified several proteins belonging to distinct ER resident chaperones families, including calnexin, responsible for playing a role in the folding steps of the AChE and NLs.  相似文献   

3.
Jang S  Kim E  Pak Y 《Proteins》2007,66(1):53-60
Recently, we have shown that a modified energy model based on the param99 force field with the generalized Born (GB) solvation model produces reliable free energy landscapes of mini-proteins with a betabetaalpha motif (BBA5, 1FSD, and 1PSV), with the native structures of the mini-proteins located in their lowest free energy minimum states. One of the main features in the modified energy model is a significant improvement for more balanced treatments of alpha and beta strands in proteins. In this study, using the replica exchange molecular dynamics (REMD) simulation method with this new force field, we have carried out extensive ab initio folding studies of several well-known peptides with alpha or beta strands (C-peptide, EK-peptide, le0q, and gbl). Starting from fully extended conformations as the initial conditions, all of the native-like structures of the target peptides were successfully identified by REMD, with reasonable representations of free energy surfaces. The present simulation results with the modified energy model are consistent with experiments, demonstrating an extended applicability of the energy model to folding studies of a variety of alpha-helices, beta-strands, and alpha/beta proteins.  相似文献   

4.
The fibrillization of α-synuclein (α-syn) is a key event in the pathogenesis of α-synucleinopathies. Mutant α-syn (A53T, A30P, or E46K), each linked to familial Parkinson's disease, has altered aggregation properties, fibril morphologies, and fibrillization kinetics. Besides α-syn, Lewy bodies also contain several associated proteins including small heat shock proteins (sHsps). Since α-syn accumulates intracellularly, molecular chaperones like sHsps may regulate α-syn folding and aggregation. Therefore, we investigated if the sHsps αB-crystallin, Hsp27, Hsp20, HspB8, and HspB2B3 bind to α-syn and affect α-syn aggregation. We demonstrate that all sHsps bind to the various α-syns, although the binding kinetics suggests a weak and transient interaction only. Despite this transient interaction, the various sHsps inhibited mature α-syn fibril formation as shown by a Thioflavin T assay and atomic force microscopy. Interestingly, HspB8 was the most potent sHsp in inhibiting mature fibril formation of both wild-type and mutant α-syn. In conclusion, sHsps may regulate α-syn aggregation and, therefore, optimization of the interaction between sHsps and α-syn may be an interesting target for therapeutic intervention in the pathogenesis of α-synucleinopathies.  相似文献   

5.
GTP-binding proteins (GTPases) have been detected in the mitochondria of human placenta. It has been proposed that porin interacts with GTPases in the mitochondrion to modulate contact site function, however, their identity and location is not known. In this study, we investigated the location of GTPases in mitochondria from term placentae as well as the expression of mitochondrial GTPases in mid-term placentae. Mitochondria obtained from human term and mid-term placentae were purified by sedimentation. Sub-mitochondrial vesicles prepared from ruptured and sonicated mitochondria were separated by ultracentrifugation in sucrose density gradients. The location of membrane vesicles was determined using marker enzymes. Mitochondrial proteins were separated by SDS-PAGE. Western blots were incubated in [alpha-(32)P]-GTP and detected using autoradiography or antibodies against known GTPases and porin followed by enhanced chemiluminescence. [alpha-(32)P]-GTP bound 24 and 28 kDa proteins located in the outer membrane. The G(salpha)antibody detected 42.5, 53 and 67 kDa proteins. The G(ialpha)antibody identified a 40.5 kDa band in contact sites and the outer membrane, as well as 55 and 105 kDa proteins in contact site vesicles. The Ran antibody detected a 28 kDa protein, mainly in the outer membrane. Porin migrated at 30 kDa. G(ialpha)and Ran were detected in mitochondria from both term and mid-term placentae. The location of porin and GTPases leave open the possibility that these proteins interact in contact sites and may also be responding to extra-mitochondrial signals. Ran and G(ialpha)are expressed by mid-term in human placentae and may be necessary for placental functions at this stage of development. It will be important in future experiments to characterise the physiological functions of these GTP-binding proteins in the mitochondria of human placenta.  相似文献   

6.
7.
The effects of transforming growth factor-beta 1 (TGF-beta 1) on human hematopoiesis were evaluated in combination with two other regulatory cytokines, namely, recombinant human tumor necrosis factor-alpha (TNF-alpha) and recombinant human interferon-alpha (rIFN-alpha). Combinations of TNF-alpha and TGF-beta 1 resulted in a synergistic suppression of colony formation by erythroid progenitor cells (BFU-E) and an additive suppression of granulocyte-macrophage (CFU-GM) and multipotential (CFU-GEMM) progenitor cells. In addition, TGF-beta 1 synergized with rIFN-alpha to suppress CFU-GM formation, while the combined suppressive effects of both cytokines on CFU-GEMM and BFU-E were additive. When TGF-beta 1 was tested with TNF-alpha or IFN-alpha on granulocyte/macrophage colony-stimulating factor (GM-CSF)-stimulated bone marrow cells in a 5-day proliferation assay, the antiproliferative effects of TGF-beta 1 and TNF-alpha were additive, while those with TGF-beta 1 and rIFN-alpha were synergistic. A similar pattern was seen in the suppression of the myeloblastic cell line KG-1 where TGF-beta 1 in combination with TNF-alpha resulted in an additive suppression while inhibition by TGF-beta 1 and IFN-alpha was synergistic. These results demonstrate for the first time the cooperative effects between TGF-beta and TNF-alpha and IFN-alpha in the suppression of hematopoietic cell growth, raising the possibility that TGF-beta might be used in concert with TNF-alpha or IFN-alpha in the treatment of various myeloproliferative disorders.  相似文献   

8.
We address the problem of clustering the whole protein content of genomes into three different categories-globular, all-alpha, and all-beta membrane proteins-with the aim of fishing new membrane proteins in the pool of nonannotated proteins (twilight zone). The focus is then mainly on outer membrane proteins. This is performed by using an integrated suite of programs (Hunter) specifically developed for predicting the occurrence of signal peptides in proteins of Gram-negative bacteria and the topography of all-alpha and all-beta membrane proteins. Hunter is tested on the well and partially annotated proteins (2160 and 760, respectively) of Escherichia coli K 12 scoring as high as 95.6% in the correct assignment of each chain to the category. Of the remaining 1253 nonannotated sequences, 1099 are predicted globular, 136 are all-alpha, and 18 are all-beta membrane proteins. In Escherichia coli 0157:H7 we filtered 1901 nonannotated proteins. Our analysis classifies 1564 globular chains, 327 inner membrane proteins, and 10 outer membrane proteins. With Hunter, new membrane proteins are added to the list of putative membrane proteins of Gram-negative bacteria. The content of outer membrane proteins per genome (nine are analyzed) ranges from 1.5% to 2.4%, and it is one order of magnitude lower than that of inner membrane proteins. The finding is particularly relevant when it is considered that this is the first large-scale analysis based on validated tools that can predict the content of outer membrane proteins in a genome and can allow cross-comparison of the same protein type between different species.  相似文献   

9.
10.
11.
Rhesus monkeys (Macaca mulatta) gamma delta T cells were identified using a monoclonal antibody. The relative representation of gamma delta T lymphocytes in the peripheral blood, lymph nodes, and spleen resembles that of Homo sapiens. The analysis of function and specificity revealed further significant similarities between the simian and human gamma delta T-cell systems. Since both human and monkey gamma delta T lymphocytes can effectively lyse cells infected with immunodeficiency viruses, it is possible that the primate gamma delta T-cell systems contribute to antiviral immunosurveillance.  相似文献   

12.
13.
Alpha-lactalbumin as a lysosomal enzyme-releasing factor   总被引:1,自引:0,他引:1  
In the early stage of mammary gland involution, biochemically detectable lysosomal damage occurs. The mechanism(s) underlying this damage is not well understood. We found that alpha-lactalbumin from mouse milk induced the release of enzymes from the lysosomes of mouse mammary epithelial cells in vitro, and this induction also occurred with bovine alpha-lactalbumin. This enzyme release was accelerated by the addition of whey proteins with a molecular weight of 50 000 to 60 000. We also found that the lysosomal membrane of mammary epithelial cells had a strong affinity for alpha-lactalbumin.  相似文献   

14.
pDC are known to produce large amount of IFN-alpha/beta in response to viruses, and act as a major link between the innate and adaptive immune response. This study concentrated on the interaction of human peripheral blood derived pDC with HCV NS3, NS4, and NS5 proteins, and their maturation, cytokine secretion and functional properties. It was shown that HCV NS5 interferes with CD40L induced maturation of pDC as indicated by decreased expression of CD83 and CD86 markers. CpG ODN stimulated HCV NS3 and NS5 treated pDC showed decreased production of IFN-alpha. In the case of NS3, IFN-alpha production was reduced to 126 pg/ml as compared to 245 pg/ml in controls (P < 0.01), and with NS5, IFN-alpha production was reduced to 92 pg/ml as compared to 238 pg/ml in controls (P < 0.05). In the presence of HCV NS5, the T cell stimulatory capacity of pDC was impaired, as indicated by decreased proliferation of T cells, and decreased production by the T cells of IFN-gamma, which were down to 86 pg/ml as compared to 260 pg/ml in controls (P < 0.05). These results suggest that HCV NS5 impairs pDC function and is in agreement with several other in vivo studies indicating decreased numbers of, and dysfunctional pDC, in chronic HCV infected patients.  相似文献   

15.
The synthesis of alkyl-alpha-rhamnosides by alpha-rhamnosidase was studied using rhamnose and rhamnosides, particularly the flavonoid naringin, as glycosylation agents, and water soluble alcohols as acceptors. The reaction products were analyzed by HPLC chromatography and identified by 13C y 1H NMR. The glycosylation of alcohols by reverse hydrolysis was maximum for 40% methanol, 30% ethanol, 10% propanol and 20% isopropanol. Under optimum conditions the yield of rhamnose to alkyl-alpha-rhamnoside transformation decreased from 68% for methyl-alpha-rhamnoside to 10% for isopropyl-alpha-rhamnoside. The time course of rhamnosylations produced using naringin as the donor was comparable with that of the reverse hydrolysis obtained at the same molar concentration of the donor. The flavonoids and their derivatives remaining in the solution after the glycosylation were removed by ion exchange QEAE chromatography at pH 10. These results indicate that both, reverse hydrolysis and glycosylation by naringin are acceptable procedures for the enzymatic synthesis of short chain length alkyl-alpha-L-rhamnosides.  相似文献   

16.
This article describes a novel bioreactor configuration for production optimization of recombinant proteins in Escherichia coli. Inducer addition and harvesting are controlled on-line based on indirect estimation of biomass concentration and specific growth rate from addition of NaOH to maintain constant pH. When either a predetermined biomass concentration is reached or the cultures have obtained, a constant specific growth rate inducer is introduced automatically. The induction period is ended by automatic harvesting of the cultures either at a predetermined biomass concentration or when substrate (in this study glucose) is depleted, detected as an increase of pH, or dissolved oxygen tension. During harvesting, metabolic activities are quenched within 3 min by cooling of the cell suspension. The system has been used to optimize expression of glutathione S-transferase (GST) fusion protein of the ligand binding domain of mouse peroxisome proliferator-activated receptor, GST-PPARalpha LBD. Total yield of GST-PPARalpha LBD was independent of the time of inducer addition as long as the length of induction period corresponded to at least 0.25 cell divisions while the yield of soluble GST-PPARalpha LBD, the only active form, increased with the length of induction period. Highest yields were obtained when the inducer was added at low cell concentration as soon as constant specific growth rate was detected, resulting in induction periods corresponding to 3.4 +/- 0.4 cell divisions. The specific growth rate remained almost constant for one cell division after inducer addition, whereafter it decreased. No decrease of specific growth rate was observed when inducer was added in the lag-phase, and no soluble protein was produced. These results suggest that solely soluble GST-PPARalpha LBD acts as a growth inhibitor and that GST-PPARalpha LBD is expressed predominantly as inclusion bodies immediately after inducer addition whereas the proportion expressed as soluble protein is increased after 1 h of induction. Compared to the procedures, which are generally used for protein expression in the laboratory, this system is less labor intensive, it automatically provides recording of biomass concentration and specific growth rate, and it allows direct comparisons between expression of different proteins and performance of different constructs since the induction period is linked to growth.  相似文献   

17.
Knock out mice deficient for the splice-isoform alphaalpha of neuronal nitric oxide synthase (nNOSalphaalpha) display residual nitric oxide synthase activity and immunosignal. To attribute this signal to the two minor neuronal nitric oxide synthase splice variants, betabeta and gammagamma, we generated isoform-specific anti-peptide antibodies against the nNOSalphaalpha specific betabeta-finger motif involved in PDZ domain scaffolding and the nNOSbetabeta specific N-terminus. The nNOSalphaalpha betabeta-finger-specific antibody clearly recognized the 160-kDa band of recombinant nNOSalphaalpha on Western blots. Using immunocytochemistry, this antibody displayed, in rats and wild-type mice, a labeling pattern similar to but not identical with that obtained using a commercial pan-nNOS antibody. This similarity indicates that the majority of immunocytochemically detectable nNOS is not likely to be complexed with PDZ-domain proteins via the betabeta-finger motif. This conclusion was confirmed by the inhibition of PSD-95/nNOS interaction by the nNOSalphaalpha betabeta-finger antibody in pull-down assays. By contrast, nNOSalphaalpha betabeta-finger labeling was clearly reduced in hippocampal and cortical neuropil areas enriched in NMDA receptor complex containing spine synapses. In nNOSalphaalpha knock out mice, nNOSalphaalpha was not detectable, whereas the pan-nNOS antibody showed a distinct labeling of cell bodies throughout the brain, most likely reflecting betabeta/gammagamma-isoforms in these cells. The nNOSbetabeta antibody clearly detected bacterial expressed nNOSbetabeta fusion protein and nNOSbetabeta in overexpressing HEK cells by Western blotting. Immunocytochemically, individual cell bodies in striatum, cerebral cortex, and in some brain stem nuclei were labeled in knock out but not in wild-type mice, indicating an upregulation of nNOSbetabeta in nNOSalphaalpha deficient animals.  相似文献   

18.
The amino acid sequences of the a subunits of tryptophan synthase from ten different microorganisms were aligned by standard procedures. The alpha helices, beta strands and turns of each sequence were predicted separately by two standard prediction algorithms and averaged at homologous sequence positions. Additional evidence for conserved secondary structure was derived from profiles of average hydropathy and chain flexibility values, leading to a joint prediction. There is good agreement between (1) predicted beta strands, maximal hydropathy and minimal flexibility, and (2) predicted loops, great chain flexibility, and protein segments that accept insertions of various lengths in individual sequences. The a subunit is predicted to have eight repeated beta-loop-alpha-loop motifs with an extra N-terminal alpha helix and an intercalated segment of highly conserved residues. This pattern suggests that the territory structure of the a subunit is an eightfold alpha/beta barrel. The distribution of conserved amino acid residues and published data on limited proteolysis, chemical modification, and mutagenesis are consistent with the alpha/beta barrel structure. Both the active site of the a subunit and the combining site for the beta 2 subunit are at the end of the barrel formed by the carboxyl-termini of the beta strands.  相似文献   

19.
The role of murine Hsp25 phosphorylation in the protection mediated by this protein against TNFα- or H2O2-mediated cytotoxicity was investigated in L929 cell lines expressing wild type (wt-) or nonphosphorylatable (mt-) Hsp25. We show that mt-Hsp25, in which the phosphorylation sites, serines 15 and 86, were replaced by alanines, is still efficient in decreasing intracellular reactive oxygen species levels and in raising glutathione cellular content, leading the protective activity of mt-Hsp25 against oxidative stress to be identical to that of wt-Hsp25. To independently investigate the role of Hsp25 phosphorylation, we blocked TNFα-induced phosphorylation of wt-Hsp25 using SB203580, a specific inhibitor of the P38 MAP kinase. This treatment did not abolish the protective activity of Hsp25 against TNFα. The pattern of Hsp25 oligomerization was also analyzed, showing mt-Hsp25 to constitutively display large native sizes, as does wt-Hsp25 after TNFα treatment in the presence of SB203580. Our results, therefore, are consistent with the possibility that the hyperaggregated form of Hsp25 is responsible for the protective activity against oxidative stress and that the phosphorylation of serines 15 and/or 86 by interfering with this structural reorganization, may lead to the inactivation of Hsp25 protective activity. J. Cell. Biochem. 69:436–452, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Proteins are generally classified into four structural classes: all-alpha proteins, all-beta proteins, alpha + beta proteins, and alpha/beta proteins. In this article, a protein is expressed as a vector of 20-dimensional space, in which its 20 components are defined by the composition of its 20 amino acids. Based on this, a new method, the so-called maximum component coefficient method, is proposed for predicting the structural class of a protein according to its amino acid composition. In comparison with the existing methods, the new method yields a higher general accuracy of prediction. Especially for the all-alpha proteins, the rate of correct prediction obtained by the new method is much higher than that by any of the existing methods. For instance, for the 19 all-alpha proteins investigated previously by P.Y. Chou, the rate of correct prediction by means of his method was 84.2%, but the correct rate when predicted with the new method would be 100%! Furthermore, the new method is characterized by an explicable physical picture. This is reflected by the process in which the vector representing a protein to be predicted is decomposed into four component vectors, each of which corresponds to one of the norms of the four protein structural classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号