首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The genome sequence of Pseudomonas aeruginosa strain PAO1 has been determined to facilitate postgenomic studies aimed at understanding the capacity of adaptation of this ubiquitous opportunistic pathogen. P. aeruginosa produces toxins and hydrolytic enzymes that are secreted via the type II secretory pathway using the Xcp machinery or 'secreton'. In this study, we characterized a novel gene cluster, called hxc for homologous to xcp. Characterization of an hxcR mutant, grown in phosphate-limiting medium, revealed the absence of a 40 kDa protein found in the culture supernatant of wild-type or xcp derivative mutant strains. The protein corresponded to the alkaline phosphatase L-AP, renamed LapA, which is secreted in an xcp-independent but hxc-dependent manner. Finally, we showed that expression of the hxc gene cluster is under phosphate regulation. This is the first report of the existence of two functional type II secretory pathways within the same organism, which could be related to the high adaptation potential of P. aeruginosa.  相似文献   

3.
4.
5.
6.
Type III secretion-mediated cytotoxicity is one of the key virulence mechanisms of the opportunistic pathogen Pseudomonas aeruginosa. Prior data from several laboratories have established that metabolism is a key factor in the regulation of type III secretion gene expression in P. aeruginosa. Here we use a fluorescence-activated cell sorter (FACS)-based approach to investigate expression of type III secretion genes at a single-cell level. The data demonstrate that the metabolic state regulates the percentage of cells that are able to induce type III secretion gene expression under inducing conditions. We also present evidence that this regulation is the result of an effect of the growth conditions on the ability of P. aeruginosa to assemble a functional type III secretion apparatus. Preliminary data suggest that the metabolite that controls type III secretion gene expression is derived from acetyl-CoA and that this regulation may, in part, be mediated by changes in the intracellular concentration of cyclic-AMP.  相似文献   

7.
铜绿假单胞菌是临床上重要的条件致病菌,具有多种毒力因子且极易产生耐药性。Ⅲ型分泌系统(Type Ⅲ secretion system,T3SS)是铜绿假单胞菌中重要的毒性因子分泌系统,该菌通过Ⅲ型分泌系统将多种毒力因子注入到真核宿主细胞内并逃逸宿主细胞免疫系统的清除,引起宿主细胞相应的病理变化。对Ⅲ型分泌系统的研究,不仅有助于明确铜绿假单胞菌的致病机理,更可为临床治疗和药物研发提供理论基础。本文主要对铜绿假单胞菌中Ⅲ型分泌系统的结构、功能、调控机制以及针对性治疗策略等方面的研究进行了综述。  相似文献   

8.
9.
The Escherichia coli system is the system of choice for recombinant protein production because it is possible to obtain a high protein yield in inexpensive media. The accumulation of protein in an insoluble form in inclusion bodies remains a major disadvantage. Use of the Pseudomonas aeruginosa type III secretion system can avoid this problem, allowing the production of soluble secreted proteins.  相似文献   

10.
A systematic analysis of the type III secretion (T3S) genes of Pseudomonas aeruginosa strain PAO1 revealed that they are under quorum-sensing control. This observation was supported by the down-regulation of the T3S regulon in the presence of RhlR-C4HSL and the corresponding advanced secretion of ExoS in a rhlI mutant.  相似文献   

11.
12.
Pseudomonas aeruginosa is a free-living and common environmental bacterium. It is an opportunistic and nosocomial pathogen causing serious human health problems. To overcome its predators, such as macrophages and environmental phagocytes, it utilises different survival strategies, such as the formation of microcolonies and the production of toxins mediated by a type III secretion system (TTSS). The aim of this study was to examine interaction of TTSS effector proteins of P. aeruginosa PA103 with Acanthamoeba castellanii by co-cultivation, viable count, eosin staining, electron microscopy, apoptosis assay, and statistical analysis. The results showed that P. aeruginosa PA103 induced necrosis and apoptosis to kill A. castellanii by the effects of TTSS effector proteins ExoU, ExoS, ExoT, and ExoY. In comparison, Acanthamoeba cultured alone and co-cultured with P. aeruginosa PA103 lacking the known four TTSS effector proteins were not killed. The results are consistent with P. aeruginosa being a strict extracellular bacterium that needs TTSS to survive in the environment, because the TTSS effector proteins are able to kill its eukaryotic predators, such as Acanthamoeba.  相似文献   

13.
14.
【目的】进一步研究III型分泌系统(Type III secretion system, TTSS)抑制剂对条件致病菌Pseudomonas aeruginosa PAO1的TTSS相关蛋白、鞭毛和纤毛等主要毒性因子的影响,评估TTSS抑制剂的防治效果及潜在风险。【方法】构建TTSS效应蛋白合成基因exoY和exoT转录报告质粒pAT-exoY、pAT-exoT,并将其转入菌株PAO1中。菌株PAO1(pAT-exoY)、PAO1(pAT-exoT) 与TTSS抑制剂共同培养后,检测exoY和exoT的表达。通过SDS-PAGE检测TTSS抑制剂对鞭毛结构蛋白FliC的影响。将PAO1单菌落穿刺接种于含有TTSS抑制剂的1%琼脂糖平板,观察细菌纤毛介导的蹭行运动(Twitching motility)。【结果】转录报告实验结果表明4个TTSS抑制剂可显著抑制exoY和exoT的转录;化合物TS52、TS53和TS94虽不影响胞内TTSS针状顶端结构蛋白PcrV的产量,但可抑制PcrV蛋白的胞外运输。化合物TS53可降低鞭毛结构蛋白FliC的产生。另外,化合物TS52、TS53和TS88可降低菌株PAO1的蹭行运动能力,但TS94可提高菌株PAO1的这种运动能力。【结论】TTSS抑制剂除通过抑制TTSS表达外,还可能通过影响其它毒性因子如鞭毛的合成、IV型分泌系统介导的蹭行运动等方式影响菌株PAO1致病性。  相似文献   

15.
16.
17.
Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, translocates exoenzymes (Exo) directly into the eukaryotic cell cytoplasm. This is accomplished by a type III secretion/translocation machinery. Here, we show that the P. aeruginosa type III secretory needle structure is composed essentially of PscF, a protein required for secretion and P. aeruginosa cytotoxicity. Partially purified needles, detached from the bacterial surface, are 60-80 nm in length and 7 nm in width, resembling needles from Yersinia spp.. YscF of Yersinia enterocolitica was able to functionally complement the pscF deletion, but required 11 P. aeruginosa-specific amino acids at the N-terminus for its function.  相似文献   

18.
【目的】铜绿假单胞菌是引起医院获得性感染最常见的条件致病菌,而III型分泌系统(Type III secretion system,TTSS)是其致病的主要因子之一。本文从合成的21个肉桂酸衍生物中筛选影响TTSS效应子(Effector)产生的化合物,并初步研究其作用机制。【方法】将TTSS效应子合成基因exoS的转录报告质粒pAT-exoS转入菌株PAO1中,获得PAO1(pAT-exoS)。待筛选的化合物与PAO1(pAT-exoS)菌株共培养6 h后,检测exoS基因的表达,从中筛选影响exoS基因表达的化合物。【结果】筛选结果表明:21个化合物中,3个化合物抑制exoS基因表达,2个化合物则促进exoS基因表达。此外,化合物TS128、TS143和TS160对菌株生长有明显的抑制作用。Western blot实验进一步证实筛选得到的化合物TS108、TS128和TS165可抑制ExoS的产生;化合物TS139和TS143则促进ExoS的产生。为进一步研究抑制剂的作用机理,过量表达TTSS主要的调控因子exsA基因可部分消除抑制剂TS108和TS165的抑制效果;而rsmZ rsmY双基因突变体PAO6421中添加抑制剂TS108和TS165并不能显著抑制exoS基因的表达,同样,抑制剂TS108和TS165也不影响受Gac/Rsm信号传导系统调控的群体感应信号分子的产生。【结论】抑制剂TS108和TS165的作用机制可能主要是影响esxA基因,从而影响exoS基因表达及蛋白产量。  相似文献   

19.
The type III secretion system (T3SS) of Pseudomonas aeruginosa is an important virulence factor. The T3SS of P. aeruginosa can be induced by a low calcium signal or upon direct contact with the host cells. The exact pathway of signal sensing and T3SS activation is not clear. By screening a transposon insertion mutant library of the PAK strain, mutation in the mucA gene was found to cause repression of T3SS expression under both type III-inducing and -noninducing conditions. Mutation in the mucA gene is known to cause alginate overproduction, resulting in a mucoid phenotype. Alginate production responds to various environmental stresses and plays a protective role for P. aeruginosa. Comparison of global gene expression of mucA mutant and wild-type PAK under T3SS-inducing conditions confirmed the down regulation of T3SS genes and up regulation of genes involved in alginate biosynthesis. Further analysis indicated that the repression of T3SS in the mucA mutant was AlgU and AlgR dependent, as double mutants mucA/algU and mucA/algR showed normal type III expression. An algR::Gm mutant showed a higher level of type III expression, while overexpression of the algR gene inhibited type III gene expression; thus, it seems that the AlgR-regulated product inhibits the expression of the T3SS genes. It is likely that P. aeruginosa has evolved tight regulatory networks to turn off the energy-expensive T3SS when striving for survival under environmental stresses.  相似文献   

20.
Pseudomonas syringae is a model phytopathogenic bacterium that uses the type III secretion system (T3SS) to cause lethal diseases in staple crops and thus presents a threat to food security worldwide. Great progress has been made in delineating the biochemical mechanisms and cellular targets of T3SS effectors, but less is known about the signalling pathways and molecular mechanisms of T3SS regulators. In recent years, thanks to the popularity and power of genome-wide mutant screening and high-throughput sequencing, new regulatory proteins (such as RhpR, AefR, AlgU and CvsR) and proteases (such as Lon and RhpP) have been identified as T3SS regulators in P. syringae pathovars. The detailed mechanisms of previously illustrated regulators (such as HrpRS, HrpL and HrpGV) have also been further studied. Notably, the two-component system RhpRS has been determined to play key roles in the modulation of T3SS via direct regulation of hrpRS and other virulence-related pathways by sensing changes in environmental signals. In addition, secondary messengers (such as c-di-GMP and ppGpp) have been shown to fine-tune the activity of T3SS. Overall, these studies have suggested the existence of a highly intricate regulatory network for T3SS, which controls the pathogenicity of P. syringae. This short review summarizes studies of P. syringae T3SS regulation and the known mechanisms of key regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号