首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Lund G  Lauria M  Guldberg P  Zaina S 《Genetics》2003,165(2):835-848
This study investigates the prevalence of CG and CNG suppression in single- vs. multicopy DNA regions of the maize genome. The analysis includes the single- and multicopy seed storage proteins (zeins), the miniature inverted-repeat transposable elements (MITEs), and long terminal repeat (LTR) retrotransposons. Zein genes are clustered on specific chromosomal regions, whereas MITEs and LTRs are dispersed in the genome. The multicopy zein genes are CG suppressed and exhibit large variations in CG suppression. The variation observed correlates with the extent of duplication each zein gene has undergone, indicating that gene duplication results in an increased turnover of cytosine residues. Alignment of individual zein genes confirms this observation and demonstrates that CG depletion results primarily from polarized C:T and G:A transition mutations from a less to a more extensively duplicated gene. In addition, transition mutations occur primarily in a CG or CNG context suggesting that CG suppression may result from deamination of methylated cytosine residues. Duplication-dependent CG depletion is likely to occur at other loci as duplicated MITEs and LTR elements, or elements inserted into duplicated gene regions, also exhibit CG depletion.  相似文献   

3.
4.
5.
In vertebrates, the majority of homeobox (HBox) genes are found in four clusters and this structural organization is believed to be of functional importance. Many HBox genes sustain their expression in the appendages of the adult newt. To further understand their regulation, the genomic loci of four newt HBox genes (two from the human HBox (HOX)-2 complex and two from the HOX-3 complex) were analysed and compared with homologous loci in other vertebrates. Notophthalmus viridescens HBox (NvHBox) genes were selected from a lambda EMBL3 library and analysed by restriction mapping and nucleotide (nt) sequencing. The nt sequences of the NvHBox genes have a very high degree of homology (more than 90%) with the human and mouse HBox genes, HOX-3.3, HOX-3.4, HOX-2.7 and HOX-2.8. The sequences flanking the HBox are also very homologous to their human and mouse counterparts. Moreover, the size of the DNA spacer separating NvHBox-3.3 from NvHBox-3.4, and NvHBox-2.7 from NvHBox-2.8 in the newt is similar in the homologous regions of the mouse and human, despite there being a C value ten times greater in the newt genome. Finally, three of these NvHBox genes are expressed in the limbs of the adult newt.  相似文献   

6.
The 5 S DNAs and several tDNAs of Xenopus laevis reside primarily in large clusters of tandem repeating units. We have discovered that a substantial number of these genes, along with portions of their adjacent spacer sequences, are also located in dispersed genomic locations apart from the major clusters. This was accomplished by "null-digesting" total genomic DNA with restriction enzymes that do not cut within the X. laevis tDNA or 5 S DNA major repeats. The tDNA and 5 S DNA main clusters therefore remain intact and can be easily separated on gels from the dispersed tDNAs and 5 S DNAs present as low molecular weight restriction fragments. Probing these smaller fragments with different portions of the major repeats has revealed that many of the dispersed genes are organized differently from the corresponding tDNAs and 5 S DNAs of the primary clusters. Some of the fragments containing dispersed genes are actually present in multiple copies. In addition, many tDNA null-digestion fragments contain more than one type of tRNA coding region. One set of "dispersed" tDNAs actually comprises a tandemly arranged minor tDNA family which has retained the same repeat length (3.18 kb) as the major tDNA family, but has a substantially different organization. There is significant population polymorphism in the organization of the dispersed tDNAs and 5 S DNAs. Dispersed genes that appear to be derived from clusters of tandem repeats ("orphons") have been described for several gene families in invertebrates. The occurrence of this phenomenon in vertebrates as well, suggests that such dispersed genes may be a general feature of all eukaryotic genomes.  相似文献   

7.
Isolation and characterization of six different chicken actin genes.   总被引:14,自引:4,他引:10       下载免费PDF全文
Genes representing six different actin isoforms were isolated from a chicken genomic library. Cloned actin cDNAs as well as tissue-specific mRNAs enriched in different actin species were used as hybridization probes to group individual actin genomic clones by their relative thermal stability. Restriction maps showed that these actin genes were derived from separate and nonoverlapping regions of genomic DNA. Of the six isolated genes, five included sequences from both the 5' and 3' ends of the actin-coding area. Amino acid sequence analysis from both the NH2- and COOH-terminal regions provided for the unequivocal identification of these genes. The striated isoforms were represented by the isolated alpha-skeletal, alpha-cardiac, and alpha-smooth muscle actin genes. The nonmuscle isoforms included the beta-cytoplasmic actin gene and an actin gene fragment which lacked the 5' coding and flanking sequence; presumably, this region of DNA was removed from this gene during construction of the genomic library. Unexpectedly, a third nonmuscle chicken actin gene was found which resembled the amphibian type 5 actin isoform (J. Vandekerckhove, W. W. Franke, and K. Weber, J. Mol. Biol., 152:413-426). This nonmuscle actin type has not been previously detected in warm-blooded vertebrates. We showed that interspersed, repeated DNA sequences closely flanked the alpha-skeletal, alpha-cardiac, beta-, and type 5-like actin genes. The repeated DNA sequences which surround the alpha-skeletal actin-coding regions were not related to repetitious DNA located on the other actin genes. Analysis of genomic DNA blots showed that the chicken actin multigene family was represented by 8 to 10 separate coding loci. The six isolated actin genes corresponded to 7 of 11 genomic EcoRI fragments. Only the alpha-smooth muscle actin gene was shown to be split by an EcoRI site. Thus, in the chicken genome each actin isoform appeared to be encoded by a single gene.  相似文献   

8.
D A Konkel  J V Maizel  P Leder 《Cell》1979,18(3):865-873
We have determined the entire nucleotide sequence of a cloned mouse beta--globinminor gene and compared it to the closely related sequence of the betamajor gene. These two genes differ by nine amino acids and presumably evolved from a common ancestral gene as recently as 50 million years ago. Since these genes are closely linked and coordinately expressed, they provide an especially favorable opportunity to assess selection and mutation as these processes affect genes under similar constraints. We find that evolution has preserved these two genes in two short segments of DNA which include their immediately adjacent flanking regions. These regions presumably encode functions that are necessary for proper globin gene expression. In contrast, the more distal flanking sequences and major segments of the long intervening sequences have diverged much more sharply. The homology pattern in these genes also provides considerable insight into the mechanisms by which less constrained nucleotide sequences diverge rapidly. Change in such regions apparently occurs less by point mutation than by insertion, deletion and duplication of relatively short segments of the genome.  相似文献   

9.
10.
We have studied the organization of variable region (V) genes of the human immunoglobulin heavy chain (H) by cosmid cloning. We isolated two independent immunoglobulin D5 clusters (D5-a and D5-b) from cosmid libraries of the human genome. Restriction maps of these two regions showed that downstream 15 kb portions of the 55 kb overlap were different although upstream 40 kb portions were almost identical. Four more D segments, (DM, DXP, DA and DK) were found around the D5 segment in the conserved region of each cluster. Nucleotide sequences of the corresponding D segments from each cluster were almost identical and they encoded potentially functional D regions. Analysis using human-rodent somatic cell hybrids demonstrated that both clusters were located in the immunoglobulin heavy chain (H) locus on chromosome 14, suggesting that the D5-a and D5-b regions evolved by internal duplication within this locus. We also isolated a 60 kb DNA region carrying four VH segments, designated as VH-F region, which was located on chromosome 16. Nucleotide sequences of the four VH segments were determined. Two of them encoded potentially functional VH segments, and the other two were pseudogenes. Some more VH segments were found to be located outside chromosome 14, by Southern blot hybridization of human-rodent hybrid cell DNAs. These results provide further evidence that the human VH locus has undergone recent reorganization.  相似文献   

11.
Genes present in virulent bacterial strains but absent in avirulent close relatives can be of great biologic and clinical interest. This project aimed to identify strain specific DNA sequences of Leptospira interrogens serovar lai, which is absent in the saprophytic L. biflexa serovar monvalerio, via suppression subtractive hybridization with the former as the tester while the latter as the driver. The mixture of PCR amplified DNA fragments from two subtractive hybridization experiments were cloned into pMD 18-T vector and the positive clones were identified by dot blotting against the chromosome DNA of the two strains individually. After DNA sequencing and analysis, the distribution of these genomic fragment sequences in a panel of pathogenic and nonpathogenic leptospires was investigated employing dot blot analysis. Among the 188 positive clones randomly chosen, 24 contained the tester strain specific genomic regions, of which, 5 were non-coding fragments while the others contained 23 distinct protein coding sequences. Besides 9 genes encoding functional proteins, 12 genes encode unknown proteins and the rest two genes encode proteins with recognizable domain structures, one for a putative leucine-rich repeats (LRR) family protein while the other as an outer-membrane protein. Our experiment results indicated that suppression subtractive hybridization is effective for screening specific DNA sequences between two leptospiral strains, and some of these sequences might be responsible for virulence determination. Further analysis of these DNA sequences will provide important information on the pathogenesis of Leptospira.  相似文献   

12.
13.
14.
15.
In plant genomes, there exist discrete regions rich in CpG dinucleotides, namely CpG clusters. In rice, most of these CpG clusters are associated with genes. Rice genes are grouped into one of the five classes according to the position of an associated CpG cluster. Among them, class 1 genes, which harbor a CpG cluster at the 5′-terminus, share similarities with human genes having CpG islands. In the present study, by analyzing plant genome sequence data, primarily from rice, we investigated the chromosomal distribution of genes of each class, mainly class 1 genes. Class 1 genes were not uniformly distributed across the rice genome, but were clustered into discrete chromosomal segments. EST-based analysis of the distribution of expressed genes indicates that this segmental distribution of class 1 genes caused a preferential distribution of expressed genes within class 1 gene-rich segments. We then compared the methylation status of genes of each class to examine the possibility that differential DNA methylation, if any, is relevant to the observed differential expression level of genes inside and outside the class 1 segments. The difference in the methylation level between these genes was revealed to be fairly small, which does not support the above-mentioned possibility. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

16.
17.
BACKGROUND: Insects and crustaceans are generally assumed to derive from a segmented common ancestor that had a distinct head but uniform, undifferentiated trunk segments. The subdivision of the body into functionally distinct regions (e.g. thorax and abdomen) is thought to have evolved independently in these two lineages. In insects, the differences between segments in the trunk are controlled by the Antennapedia-like genes of the homeotic gene clusters. Study of these genes in crustaceans should provide a basis for comparing body plans and assessing their evolutionary origin. RESULTS: Using a polymerase chain reaction (PCR) / inverse PCR strategy, we have isolated six genes of the HOM/Hox family from the crustacean Artemia franciscana. Five of these are clearly identifiable as specific homologues of the insect homeotic genes Dfd, Scr, Antp, Ubx and abdA. The sixth appears to have no close counterpart in insects. CONCLUSION: All the homeotic genes that specify middle body regions in insects originated before the divergence of the insect and crustacean lineages, probably not later than the Cambrian (about 500 million years ago). A commonly derived groundplan may underlie segment diversity in these two groups.  相似文献   

18.
Conservation of synteny of mammalian imprinted genes between chicken and human suggested that highly conserved gene clusters were selected long before these genes were recruited for genomic imprinting in mammals. Here we have applied in silico mapping of orthologous genes in pipid frog, zebrafish, spotted green and Japanese pufferfish to show considerable conservation of synteny in lower vertebrates. More than 400 million years ago in a common ancestor of teleost fish and tetrapods, 'preimprinted' chromosome regions homologous to human 6q25, 7q21, 7q32, 11p15, and 15q11-->q12 already contained most present-day mammalian imprinted genes. Interestingly, some imprinted gene orthologues which are isolated from imprinted clusters in mouse and human could be linked to preimprinted regions in lower vertebrates, indicating that separation occurred during mammalian evolution. On the contrary, newly arisen genes by segmental duplication in the mammalian lineage, i.e. SNRPN and FRAT3, were transposed or translocated to imprinted clusters and recruited for parent-specific activity. By analysis of currently available sequences of non-mammalian vertebrates, the imprinted gene clusters homologous to human chromosomes 14q32 and 19q12 are only poorly conserved in chicken, frog, and fish and, therefore, may not have evolved from ancestral preimprinted gene arrays. Evidently, evolution of imprinted gene clusters is an ongoing and dynamic process in mammals. In general, imprinted gene orthologues do not show a higher degree of synteny conservation in vertebrates than non-imprinted genes interspersed with or adjacent to an imprinted cluster.  相似文献   

19.
Han Y  Gasic K  Korban SS 《Genetics》2007,176(4):2625-2635
Plant O-methyltransferases (OMTs) play important roles in secondary metabolism. Two clusters of genes coding for caffeic acid OMT (COMT) have been identified in the apple genome. Three genes from one cluster and two genes from another cluster were isolated. These five genes encoding COMT, designated Mdomt1-Mdomt5 (GenBank accession nos. DQ886018-DQ886022), were distinguished by a (CT)(n) microsatellite in the 5'-UTR and two transposon-like sequences present in the promoter region and intron 1, respectively. The transposon-like sequence in intron 1 unambiguously traced the five Mdomt genes in the apple to a common ancestor. The ancestor must have undergone an initial duplication generating two progenitors, and this was followed by further duplication of these progenitors resulting in the two clusters identified in this study. The distal regions of the transposon-like sequences in promoter regions of Mdomt genes are capable of forming palindromic hairpin-like structures. The hairpin formation is likely responsible for nucleotide sequence differences observed in the promoter regions of these genes as it plays a destabilizing role in eukaryotic chromosomes. In addition, the possible mechanism of amplification of Mdomt genes in the apple genome is also discussed.  相似文献   

20.
We have isolated and characterized genomic DNA clones for the human and chicken homologues of the mouse En-1 and En-2 genes and determined the genomic structure and predicted protein sequences of both En genes in all three species. Comparison of these vertebrate En sequences with the Xenopus En-2 [Hemmati-Brivanlou et al., 1991) and invertebrate engrailed-like genes showed that the two previously identified highly conserved regions within the En protein ]reviewed in Joyner and Hanks, 1991] can be divided into five distinct subregions, designated EH1 to EH5. Sequences 5' and 3' to the predicted coding regions of the vertebrate En genes were also analyzed in an attempt to identify cis-acting DNA sequences important for the regulation of En gene expression. Considerable sequence similarity was found between the mouse and human homologues both within the putative 5' and 3' untranslated as well as 5' flanking regions. Between the mouse and Xenopus En-2 genes, shorter stretches of sequence similarity were found within the 3' untranslated region. The 5' untranslated regions of the mouse, chicken and Xenopus En-2 genes, however, showed no similarly conserved stretches. In a preliminary analysis of the expression pattern of the human En genes, En-2 protein and RNA were detected in the embryonic and adult cerebellum respectively and not in other tissues tested. These patterns are analogous to those seen in other vertebrates. Taken together these results further strengthen the suggestion that En gene function and regulation has been conserved throughout vertebrate evolution and, along with the five highly conserved regions within the En protein, raise an interesting question about the presence of conserved genetic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号