首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A newly detected amide synthetase, designated 4-methyleneglutamine synthetase, has been partially purified from extracts of 5- to 7-day germinated peanut cotyledons (Arachis hypogaea). Purification steps include fractionation with protamine sulfate and ammonium sulfate followed by column chromatography on Bio-Gel and DEAE-cellulose; synthetase purified over 300-fold is obtained. The enzyme has a molecular weight estimated to be approximately 250,000 and a broad pH optimum with maximal activity at approximately pH 7.5. Maximal rates of activity are obtained with NH+4 (Km = 3.7 mM) as the amide donor and the enzyme is highly specific for 4-methylene-L-glutamic acid (Km = 2.7 mM) as the amide acceptor. Product identification and stoichiometric studies establish the reaction catalyzed to be: 4-methyleneglutamic acid + NH4+ + ATP Mg2+----4-methyleneglutamine + AMP + PPi. PPi accumulates only when F- is added to inhibit pyrophosphatase activity present in synthetase preparations. This enzymatic activity is completely insensitive to the glutamine synthetase inhibitors, tabtoxinine-beta-lactam and F-, and is only partially inhibited by methionine sulfoximine. It is, however, inhibited by added pyrophosphate in the presence of F- as well as by certain divalent metal ions (other than Mg2+) including Hg2+, Ni2+, Mn2+, and Ca2+. All data obtained indicate that this newly detected synthetase is distinct from the well-known glutamine and asparagine synthetases.  相似文献   

2.
The glutamine synthetase from Bacillus cereus IFO 3131 was purified to homogeneity. The enzyme is a dodecamer with a molecular weight of approximately 600,000, and its subunit molecular weight is 50,000. Both Mg2+ and Mn2+ activated the enzyme as to the biosynthesis of L-glutamine, but, unlike in the case of the E. coli enzyme, the Mg2+-dependent activity was stimulated by the addition of Mn2+. The highest activity was obtained when 20 mM Mg2+ and 0.5 mM Mn2+ were added to the assay mixture. For each set of optimal assay conditions, the apparent Km values for glutamate, ammonia and a divalent cation X ATP complex were 1.03, 0.34, and 0.40 mM (Mn2+: ATP = 1: 1); 14.0, 0.47, and 0.91 mM (Mg2+: ATP = 4: 1); and 9.09, 0.45, and 0.77 mM (Mg2+: Mn2+: ATP = 4: 0.2: 1), respectively. At each optimum pH, the Vmax values for these reactions were 6.1 (Mn2+-dependent), 7.4 (Mg2+-dependent), and 12.9 (Mg2+ plus Mn2+-dependent) mumoles per min per mg protein, respectively. Mg2+-dependent glutamine synthetase activity was inhibited by the addition of AMP or glutamine; however, this inhibitory effect was suppressed in the case of the Mg2+ plus Mn2+-dependent reaction. These results suggest that the activity of the B. cereus glutamine synthetase is regulated by both the intracellular concentration and the ratio of Mn2+/Mg2+ in vivo. Also in the present investigation, a potent glutamine synthetase inhibitor(s) was detected in crude extracts from B. cereus.  相似文献   

3.
Ammonia assimilation for urea synthesis by liver mitochondria in marine elasmobranchs involves, initially, formation of glutamine which is subsequently utilized for mitochondrial carbamoyl phosphate synthesis [P. M. Anderson and C. A. Casey (1984) J. Biol. Chem. 259, 456-462]. The purpose of this study was to determine if the glutamine synthetase catalyzing this first step in urea synthesis has properties uniquely related to this function. Glutamine synthetase has been highly purified from isolated liver mitochondria of Squalus acanthias, a representative elasmobranch. The purified enzyme has a molecular weight of approximately 400,000 in the presence of Mg2+, MgATP, and L-glutamate, but dissociates reversibly to a species with a molecular weight of approximately 200,000 in the absence of MgATP and L-glutamate. Association with the glutamine- and acetylglutamate-dependent carbamoyl phosphate synthetase, also located in the mitochondria, could not be demonstrated. The subunit molecular weight is approximately 46,000. The pH optimum of the biosynthesis reaction is 7.1-7.4. The purified enzyme is stabilized by MgATP and glutamate and by ethylene glycol, and is activated by 5-10% ethylene glycol. The apparent Km values for MgATP, L-glutamate, and ammonia (NH4+-NH3) are 0.7, 11.0, and 0.015 mM, respectively. Mg2+ in excess of that required to complex ATP as MgATP is required for maximal activity; Mn2+ cannot replace Mg2+. The enzyme is activated by low concentrations of chloride, bromide, or iodide; this effect appears to be related to decreases in the apparent Km for glutamate. The enzyme is inhibited by physiological concentrations of urea, but is not significantly affected by physiological concentrations of trimethylamine-N-oxide. Except for activation by halogen anions and the very low apparent Km for ammonia, this elasmobranch glutamine synthetase has properties similar to those reported for mammalian and avian glutamine synthetases. The very low apparent Km for ammonia may be specifically related to the unique role of this glutamine synthetase in mitochondrial assimilation of ammonia for urea synthesis.  相似文献   

4.
delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine (ACV) synthetase, the multienzyme catalyzing the formation of ACV from the constituent amino acids and ATP in the presence of Mg2+ and dithioerythritol, was purified about 2700-fold from Streptomyces clavuligerus. The molecular mass of the native enzyme as determined by gel filtration chromatography is 560 kDa, while that determined by denaturing gel electrophoresis is 500 kDa. The enzyme is able to catalyze pyrophosphate exchange in dependence on L-cysteine and L-valine, but no L-alpha-aminoadipic-acid-dependent ATP/PPi exchange could be detected. Other L-cysteine- and L-valine-activating enzymes present in crude extracts were identified as aminoacyl-tRNA synthetases which could be separated from ACV synthetase. The molecular mass of these enzymes is 140 kDa for L-valine ligase and 50 kDa for L-cysteine ligase. The dissociation constants have been estimated, assuming three independent activation sites, to be 1.25 mM and 1.5 mM for cysteine and ATP, and 2.4 mM and 0.25 mM for valine and ATP, respectively. The enzyme forms a thioester with alpha-aminoadipic acid and with valine in a molar ratio of 0.6:1 (amino acid/enzyme). Thus, the bacterial ACV synthetase is a multifunctional peptide synthetase, differing from fungal ACV synthetases in its mechanism of activation of the non-protein amino acid.  相似文献   

5.
I Tarassov  N Entelis    R P Martin 《The EMBO journal》1995,14(14):3461-3471
Cytoplasmic tRNA(Lys)CUU is the only nuclear-encoded tRNA of Saccharomyces cerevisiae found to be associated with mitochondria. Selective import of this tRNA into isolated organelles requires cytoplasmic factors. Here we identify two of these factors as the cytoplasmic and mitochondrial lysyl-tRNA synthetases. The cytoplasmic enzyme is obligatory for in vitro import of the deacylated, but not of the aminoacylated tRNA. We thus infer that it is needed for aminoacylation of the tRNA, which is a prerequisite for its import. The mitochondrial synthetase, which cannot aminoacylate tRN(Lys)CUU, is required for import of both aminoacylated and deacylated forms. Its depletion leads to a total arrest of tRNA import, in vitro and in vivo. The mitochondrial lysyl-tRNA synthetase is able to form specific and stable RNP complexes with the amino-acylated tRNA. Furthermore, an N-terminal truncated form of the synthetase which cannot be targeted into mitochondria is unable to direct the import of the tRNA. We therefore hypothesize that the cytosolic precursor form of the mitochondrial synthetase has a carrier function for translocation of the tRNA across the mitochondrial membranes. However, cooperation of the two synthetases is not sufficient to direct tRNA import, suggesting the need of additional factor(s).  相似文献   

6.
The glutamine synthetases from several Pseudomonas species were purified to homogeneity, and their properties were compared with those reported for the enzymes from Escherichia coli and other gram-negative bacteria. The glutamine synthetase from Pseudomonas fluorescens was unique because it was nearly precipitated quantitatively as a homogeneous protein during dialysis of partially purified preparations against buffer containing 10 mM imidazole (pH 7.0) and 10 mM MnCl2. The glutamine synthetases from Pseudomonas putida and Pseudomonas aeruginosa were purified by affinity chromatography on Affi-blue gel. Dodecamerous forms of the E. coli and P. fluorescens glutamine synthetases had identical mobilities during polyacrylamide gel electrophoresis. Their dissociated subunits, however, migrated differently and were readily separated by electrophoresis on polyacrylamide gels containing 0.1% sodium dodecyl sulfate. This difference in subunit mobilities is not related to the state of adenylylation. Regulation of the Pseudomonas glutamine synthetase activity is mediated by an adenylylation-deadenylylation cyclic cascade system. A sensitive procedure was developed for measuring the average number of adenylylated subunits per enzyme molecule for the glutamine synthetase from P. fluorescens. This method takes advantage of the large differences in transferase activity of the adenylylated and unadenylylated subunits at pH 6.0 and of the fact that the activities of both kinds of subunits are the same at pH 8.45.  相似文献   

7.
1. The kinetic properties of mitochondrial creatine phosphokinase (Km for all substrates and maximal rates of the forward and reverse reaction) have been studied. Since (a) Km value for MgADP- (0.05 mM) and creatine phosphate (0.5 mM) are significantly lower than Km for MgATP2- (0.7 mM) and creatine (5.0 mM) and (b) maximal rate of the reverse reaction (creatine phosphate + ADP leads to ATP + creatine) equal to 3.5 mumol times min-1 times mg-1 is essentially higher than maximal rate of the forward reaction (0.8 mumol times min-1 times mg-1), ATP synthesis from ADP and creatine phosphate is kinetically preferable over the forward reaction. 2. A possible regulatory role of Mg2+ ions in the creatine phosphokinase reaction has been tested. It has been shown that in the presence of all substrates and products of the reaction the ratio of the rates of forward and reverse reactions can be effectively regulated by the concentration of Mg2+ ions. At limited Mg2+ concentrations creatine phosphate is preferably synthesized while at high Mg2+ concentrations (more ATP in the reaction medium) ATP synthesis takes place. 3. The kinetic (mathematical) model of the mitochondrial creatine phosphokinase reaction has been developed. This model accounts for the existence of a variety of molecular forms of adenine nucleotides in solution and the formation of their complexes with magnesium. It is based on the assumption that the mitochondrial creatine phosphokinase reactions mechanism is analogous to that for soluble isoenzymes. 4. The dependence of the overall rate of the creatine phosphokinase reaction on the concentration of total Mg2+ ions calculated from the kinetic model quantitatively correlates with the experimentally determined dependence through a wide range of substrates (ATP, ADP, creatine and creatine phosphate) concentration. The analysis of the kinetic model demonstrates that the observed regulatory effect of Mg2+ on the overall reaction rate can be expained by (a) the sigmoidal variation in the concentration of the MgADP- complex resulting from the competition between ATP AND ADP for Mg2+ and (b) the high affinity of the enzyme to MgADP-. 5. The results predicted by the model for the behavior of mitochondrial creatine phosphokinase under conditions of oxidative phosphorylation point to an intimate functional interaction of mitochondrial creatine phosphokinase and ATP-ADP translocase.  相似文献   

8.
The kinetic mechanism of asparagine synthetase from rat liver has been studied. The mechanism of the reaction in the presence of high concentrations of total Mg2+ (50 mM) was suggested to be a uni-uni-bi-ter ping-pong-type without abortive complexes; glutamine binds first followed by glutamate release, and aspartate and ATP bind in order followed by ordered release of PPi, AMP, and asparagine. But, it is indicated that in the presence of 0.5-2.0 mM excess Mg2+ over ATP the binding of substrates after the release of glutamate is in a rapid equilibrium system such as ordered Mg2+ and random aspartate-MgATP. Mg2+ was demonstrated to have two roles in the catalysis; to modify the enzyme and to form a complex of MgATP.  相似文献   

9.
Two molecular forms of glutamine synthetase localized in the cytoplasm and in chloroplasts, respectively, were detected in pumpkin leaves. Ammonium infiltrated into intact pumpkin leaves activated the synthesis of both enzyme forms. Glutamine synthetase from chloroplasts and the cytoplasmic enzyme were purified to homogeneity by ammonium sulfate fractionation, ion-exchange chromatography on DEAE-cellulose DE-32, selective adsorption on potassium phosphate gel and preparative electrophoresis in polyacrylamide gel. The molecular weights of both forms of glutamine synthetase as determined by gel-filtration through Sephacryl S-200 are equal to 370,000 and 480,000, respectively. During SDS polyacrylamide gel electrophoresis the enzymes from both sources produced polypeptide chains with respective molecular weights of 50,000 and 58,000. The amino acid composition of the enzymes differed considerably. The content of alpha-helix moities in the chloroplast and cytoplasmic enzyme made up to 17% and 34%, respectively. In the presence of Mg+ the pH optima for the enzymes were equal to 7.75 and 7.25, respectively, and the Km values for L-glutamate were 46 and 13 mM, respectively. It may be concluded that the enzyme forms under study are isoenzymes.  相似文献   

10.
Glutamine synthetase from Rhodospirillum rubrum can be isolated in two forms, with low and high activity, respectively, depending on the concentration of combined nitrogen in the medium before harvest. The two forms have been studied with respect to their dependence on Mn2+ and Mg2+ in both the transferase and the biosynthetic assay. There is no difference in pH optimum between the forms in the biosynthetic assay. In addition the pH-optima for the two cations studied are very close, 7.4 (Mg2+) and 7.2 (Mn2+). It also shows that the activity of the low-activity form is higher than that of the high-activity form in the Mn(2+)-dependent biosynthetic assay. The two forms of Rsp. rubrum glutamine synthetase have also been studied with respect to their sensitivity towards feed-back effectors. In the transferase assay both forms are inhibited to essentially the same degree by alanine, glycine, histidine, AMP, CTP and UTP, CTP being the most effective of the nucleotides and of the amino acids alanine causes the highest inhibition. In the biosynthetic assay these effectors show different degrees of inhibition on the two different forms; the high-activity form being the most sensitive. The results are discussed in relation to properties of glutamine synthetase from Escherichia coli and other phototropic bacteria in which regulation of glutamine synthetase is known to be due to adenylylation. It is also shown that the low-activity form of Rsp. rubrum glutamine synthetase can be activated in crude extracts in a reaction that is inhibited by glutamine.  相似文献   

11.
Glutamine synthetase in Escherichia coli is regulated by adenylation and deadenylation reactions. The adenylation reaction converts the divalent cation requirement of the enzyme from Mg2+ to Mn2+. Previously, the catalytic action of unadenylated glutamine synthetase was elucidated by monitoring the intrinsic tryptophan fluorescence change accompanying substrate binding. However, due to the lack of changes in the tryptophan fluorescence, a similar study could not be done with the adenylated enzyme. In this study, therefore, an extrinsic fluor is introduced into the adenylated glutamine synthetase by adenylating the enzyme with 2-aza-1,N6-ethenoadenosine triphosphate, a fluorescent analog of ATP. The modified enzyme (aza-epsilon-glutamine synthetase) exhibits catalytic and kinetic properties similar to those of the naturally adenylated enzyme. The results of fluorometric studies on this aza-epsilon-glutamine synthetase indicated that L-glutamate and ATP bind to both Mn2+ and Mg2+ forms of the enzyme in a random order, but only the Mn2+ form is capable of forming a highly reactive enzyme-bound intermediate which is a prerequisite for the reaction with NH4+ to form products. The extrinsic fluorescence changes are also used to determine the binding constants of various substrates and inhibitors of both the biosynthetic and gamma-glutamyl transfer reactions.  相似文献   

12.
The level of glutamine synthetase in Micrococcus glutamicus ATCC 13032 varied in response to the nitrogen source in culture medium; it was 10?20 fold higher in glutamate-, peptone- or yeast extract-grown cells than in ammonia- or urea-grown cells. Ammonia (3 mM) reduced the enzyme level to 50% when added to glutamate medium. No difference between nitrogen sources was observed in extent of inhibition by Mg2+ of γ-glutamylhydroxamate-forming (transferring) reaction in crude extracts.

The optimum pH was 7.0 ? 8.0 for glutamine-forming (synthesizing) reaction and 7.0 for transferring reaction. The enzyme was stable to heating at 50°C for 10 min in 0.05 M potassium phosphate buffer (pH 6.0) containing 0.1 mM MnCl2. Km values for glutamate, ammonia and ATP in synthesizing reaction were 7.9, 5.0 and 1.2 mM, respectively. GTP and hydroxylamine could be substituted for ATP and ammonia with about 10 and 30% reactivity. Mg2+ was effective as a cofactor in synthesizing reaction and Mn2+ showed 34% of the reactivity of Mg2+ at a concentration of 30 mM. Glutamine synthetase was inhibited by adenosine, AMP and ADP but not by amino acids other than D-threonine. The regulation system of glutamine synthetase in M. glutamicus is discussed.  相似文献   

13.
Electron probe analysis of dry cryosections was used to determine the composition of the cytoplasm and organelles of rabbit portal-anterior mesenteric vein (PAMV) smooth muscle. All analytical values given are in mmol/kg wt +/- SEM. Cytoplasmic concentrations in normal, resting muscles were: K, 611 +/- 1.7; Na, 167 +/- 2.7; Cl, 278 +/- 1.0; Mg, 36 +/- 1.1; Ca, 1.9 +/- 0.5; and P, 247 +/- 1.1. Hence, the sum of intracellular Na + K exceeded cytoplasmic Cl by 500 mmol/kg dry wt, while the calculated total, nondiffusible solute was approximately 50 mmol/kg. Cytoplasmic K and Cl were increased in smooth muscles incubated in solutions containing an excess (80 mM) of KCl. Nuclear and cytoplasmic Na and Ca concentrations were not significantly different. The mitochondrial Ca content in normal fibers was low, 0.8 +/- 0.5, and there was no evidence of mitochondrial Ca sequestration in muscles frozen after a K contracture lasint 30 min. Transmitochondrial gradients of K, Na, and Cl were small (0.9--1.2). In damaged fibers, massive mitochondrial Ca accumulation of up to 2 mol/kg dry wt in granule form and associated with P could be demonstrated. Our findings suggest (a) that the nonDonnan distribution of Cl in smooth muscle is not caused by sequestration in organelles, and that considerations of osmotic equilibrium and electroneutrality suggest the existence of unidentified nondiffusible anions in smooth muscle, (b) that nuclei do not contain concentrations of Na or Ca in excess of cytoplasmic levels, (c) that mitochondria in PAMV smooth muscle do not play a major role in regulating cytoplasmic Ca during physiological levels of contraction but can be massively Ca loaded in damaged cells, and (d) that the in situ transmitochondrial gradients of K, Na, and Cl do not show these ions to be distributed according to a large electromotive Donnan force.  相似文献   

14.
The kinetic properties of glutamine synthetase (EC 6.3.1.2) isolated from pea chloroplasts and purified according to the previously developed procedure have been investigated. The pH optimum for the enzymatic reaction in the presence of Mg2+ and Mn2+ are 7.5-7.6 and 5.5, respectively. The corresponding values of the activation energy per enzyme monomer (Mr = 60 000) are equal to 2900 and 1190 cal/mole. With Mg2+ the values of Km(app.) for NH4+, NH2OH, L-glutamate (+NH4+), L-glutamate (+NH2OH), ATP(+NH4+ and NH2OH) and Mg-ATP (+NH4+ and NH2OH) are 0.64, 17.5, 5.6, 7.0, 1.3 and 0.74 mM, respectively.  相似文献   

15.
林肯链霉菌谷氨酰胺合成酶的酶学性质   总被引:4,自引:0,他引:4  
在分离纯化的基础上,报道了pH、温度和金属离子对林肯链霉菌(Streptomyceslincolnensis)Z-512谷氨酸胺合成酶(GS)活力的影响及GS底物专一性的研究结果.在动力学性质的研究中,发现林肯链霉菌GS在生物合成反应系统中,对底物NH_4CI的饱和曲线不遵守米氏方程.Hill作图呈两相曲线.在NH_4CI浓度低的情况下,Hill系数大于1,具有正协同效应;当NH_4CI浓度增加到一定程度时,Hill系数小于1,具有负协同效应.这说明NH_4CI不仅作为林肯链霉菌GS的底物,而且作为一种效应物调节GS的活性.林肯链霉菌GS对底物Glu及ATP的饱和曲线遵守米氏方程.在不同的激活离子存在下,GS对Glu、ATP的Km值也不同.  相似文献   

16.
Bacillus stearothermophilus H-804 isolated from a hot spring in Beppu, Japan, produced an ammonia-specific NAD synthetase (EC 6.3.1.5). The enzyme specifically used NH3 as an amide donor for the synthesis of NAD as it formed AMP and pyrophosphate from deamide-NAD and ATP. None of the l-amino acids tested, such as l-asparagine or l-glutamine, or other amino compounds such as urea, uric acid, or creatinine was used instead of NH3. Mg2+ was needed for the activity, and the maximum enzyme activity was obtained with 3 mM MgCl2. The molecular mass of the native enzyme was 50 kDa by gel filtration, and SDS-PAGE showed a single protein band at the molecular mass of 25 kDa. The optimum pH and temperature for the activity were from 9.0 to 10.0 and 60 degrees C, respectively. The enzyme was stable at a pH range of 7.5 to 9.0 and up to 60 degrees C. The Km for NH3, ATP, and deamide-NAD were 0.91, 0.052, and 0.028 mM, respectively. The gene encoding the enzyme consisted of an open reading frame of 738 bp and encoded a protein of 246 amino acid residues. The deduced amino acid sequence of the gene had about 32% homology to those of Escherichia coli and Bacillus subtilis NAD synthetases. We caused the NAD synthetase gene to be expressed in E. coli at a high level; the enzyme activity (per liter of medium) produced by the recombinant E. coli was 180-fold that of B. stearothermophilus H-804. The specific assay of ammonia and ATP (up to 25 microM) with this stable NAD synthetase was possible.  相似文献   

17.
The specific activity of glutamine synthetase in cultured Chinese hamster cells is inversely related to the concentration of glutamine in the surrounding solution. Enzyme specific activity increases 8- to 10-fold when glutamine is removed from serum-free F12 growth media. The induction of glutamine synthetase activity occurs only after glutamine removal and not after the removal of other amino acids (methionine, leucine, or isoleucine). The analysis of the glutamine-mediated decrease in glutamine synthetase activity has been simplified by the finding that depression proceeds in nutrient-free buffered saline solution (141 mM NaCl, 5.4 mM KCl and 30 mM Tricine (pH 7.4). Under these conditions, 0.1 mM cyanide blocks glutamine-mediated depression. The cyanide inhibition is reversed by the addition of 1.0 mM glucose which suggests that ATP is required for depression. Glutamine-mediated depression is temperature-dependent, occurring between 25 and 45 degrees with an optimum rate at 37 degrees. Studies of the time course of induction and depression as a function of glutamine concentration suggest that glutamine regulates the rate at which the enzyme is either modified or degraded. We have employed an antibody prepared against homogeneous Chinese hamster liver glutamine synthetase to measure the amount of glutamine synthetase protein in extracts of cells containing induced or depressed levels of enzyme activity. A highly sensitive immunoprecipitation procedure enables quantitation of nanogram amounts of glutamine synthetase protein. Glutamine synthetase in cell extracts containing induced levels of enzyme activity possesses the same molecular specific activity (ratio of activity to antigenicity) as homogeneous Chinese hamster liver glutamine synthetase. The molecular specific activity of glutamine synthetase is almost the same in extracts of cells with depressed levels of enzyme obtained by growth for short (2 hours) and long (24 hours) times in the presence of glutamine. These data suggest that glutamine-mediated depression of glutamine synthetase results from degradation of enzyme molecules.  相似文献   

18.
Glutamine synthetase has been purified to homogeneity from cell extracts of a non-N2-fixing filamentous cyanobacterium, Phormidium lapideum. The subunit molecular weight of the enzyme was determined as about 59,000 by sodium dodecyl sulfate gel electrophoresis. Electron micrographs of the Phormidium enzyme revealed a two-layered structure of regular hexagons (12 subunits per molecule), which markedly resembles the three-dimensional polypeptide backbone structure of the Salmonella typhimurium glutamine synthetase established by X-ray crystallography (Almassy, Janson, Hamlin, Xuong, & Eisenberg (1986) Nature 323, 304-309). The N-terminal amino acid sequence of the Phormidium enzyme shows very high similarity with that of the enzyme from an N2-fixing cyanobacterium, Anabaena 7120; 18 residues are common in 23 residues compared. Strong immunocross-reactions between the antibody against the purified Phormidium glutamine synthetase and other cyanobacterial enzymes except the Anacystis enzyme were observed. The apparent Michaelis constants for NH3, L-glutamate, and ATP were determined to be 0.29, 7.4, and 1.7 mM, respectively. Divalent metal ions such as Mg2+ and Mn2+ activated the enzyme in the biosynthetic reaction, whereas various amino acids and glutamate analogs strongly inhibited the enzyme.  相似文献   

19.
1. Deca-2,4,6,8-tetraenoic acid is a substrate for both ATP-specific (EC 6.2.1.2 or 3) and GTP-specific (EC 6.2.1.-) acyl-CoA synthetases of rat liver mitochondria. The enzymic synthesis of decatetraenoyl-CoA results in new spectral characteristics. The difference spectrum for the acyl-CoA minus free acid has a maximum at 376nm with epsilon(mM) 34. Isosbestic points are at 345nm and 440nm. 2. The acylation of CoA by decatetraenoate in mitochondrial suspensions can be continuously measured with a dual-wavelength spectrophotometer. 3. By using this technique, three distinct types of acyl-CoA synthetase activity were demonstrated in rat liver mitochondria. One of these utilized added CoA and ATP, required added Mg(2+) and corresponded to a previously described ;external' acyl-CoA synthetase. The other two acyl-CoA synthetase activities utilized intramitochondrial CoA and did not require added Mg(2+). Of these two ;internal' acyl-CoA synthetases, one was insensitive to uncoupling agents, was inhibited by phosphate or arsenate, and corresponded to the GTP-specific enzyme. The other corresponded to the ATP-specific enzyme. 4. Atractylate inhibited the activity of the two internal acyl-CoA synthetases only when the energy source was added ATP. 5. The amount of intramitochondrial CoA acylated by decatetraenoate was independent of whether the internal ATP-specific or GTP-specific acyl-CoA synthetase was active. It is concluded that these two internal acyl-CoA synthetases have access to the same intramitochondrial pool of CoA. 6. The amount of intramitochondrial CoA that could be acylated with decatetraenoate was decreased by the addition of palmitoyl-dl-carnitine, 2-oxoglutarate, or pyruvate. These observations indicated that pyruvate dehydrogenase (EC 1.2.4.1), oxoglutarate dehydrogenase (EC 1.2.4.2), carnitine palmitoyltransferase (EC 2.3.1.-), citrate synthase (EC 4.1.3.7), and succinyl-CoA synthetase (EC 6.2.1.4) all have access to the same intramitochondrial pool of CoA as do the two internal acyl-CoA synthetases.  相似文献   

20.
Inhibition of sarcoplasmic reticulum Ca2+-ATPase by Mg2+ at high pH   总被引:1,自引:0,他引:1  
Steady state turnover of Ca2+-ATPase of sarcoplasmic reticulum has generally been reported to have a bell-shaped pH profile, with an optimum near pH 7.0. While a free [Mg2+] of 2 mM is optimal for activity at pH 7.0, it was found that this level was markedly inhibitory (K1/2 = 2 mM) at pH 8.0, thus accounting for the generally observed low activity at high pH. High activity was restored at pH 8.0 using an optimum free [Mg2+] of 0.2 mM. The mechanism of the Mg2+-dependent inhibition at pH 8.0 was probed. Inhibition was not due to Mg2+ competition with Ca2+ for cytoplasmic transport sites nor to inhibition of formation of steady state phosphoenzyme from ATP. Mg2+ inhibited (K1/2 = 1.8 mM) decay of steady state phosphoenzyme; thus, the locus of inhibition was one of the phosphoenzyme interconversion steps. Transient kinetic experiments showed that Mg2+ competitively inhibited (Ki = 0.7 mM) binding of Ca2+ to lumenal transport sites, blocking the ability of Ca2+ to reverse the catalytic cycle to form ADP-sensitive, from ADP-insensitive, phosphoenzyme. The data were consistent with a hypothesis in which Mg2+ binds lumenal Ca2+ transport sites with progressively higher affinity at higher pH to form a dead-end complex; its dissociation would then be rate-limiting during steady state turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号