首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Park S  Lippard SJ 《Biochemistry》2011,50(13):2567-2574
HMGB1, one of the most abundant nuclear proteins, has a strong binding affinity for cisplatin-modified DNA. It has been proposed that HMGB1 enhances the anticancer efficacy of cisplatin by shielding platinated DNA lesions from repair. Two cysteine residues in HMGB1 domain A form a reversible disulfide bond under mildly oxidizing conditions. The reduced domain A protein binds to a 25-bp DNA probe containing a central 1,2-d(GpG) intrastrand cross-link, the major platinum-DNA adduct, with a 10-fold greater binding affinity than the oxidized domain A. The binding affinities of singly and doubly mutated HMGB1 domain A, respectively deficient in one or both cysteine residues that form the disulfide bond, are unaffected by changes in external redox conditions. The redox-dependent nature of the binding of HMGB1 domain A to cisplatin-modified DNA suggests that formation of the intradomain disulfide bond induces a conformational change that disfavors binding to cisplatin-modified DNA. Hydroxyl radical footprinting analyses of wild-type domain A bound to platinated DNA under different redox conditions revealed identical cleavage patterns, implying that the asymmetric binding mode of the protein across from the platinated lesion is conserved irrespective of the redox state. The results of this study reveal that the cellular redox environment can influence the interaction of HMGB1 with the platinated DNA and suggest that the redox state of the A domain is a potential factor in regulating the role of the protein in modulating the activity of cisplatin as an anticancer drug.  相似文献   

2.
Jamieson ER  Lippard SJ 《Biochemistry》2000,39(29):8426-8438
High-mobility group (HMG) domain proteins bind specifically to the major DNA adducts formed by the anticancer drug cisplatin and can modulate the biological response to this inorganic compound. Stopped-flow fluorescence studies were performed to investigate the kinetics of formation and dissociation of complexes between HMG-domain proteins and a series of 16-mer oligonucleotide probes containing both a 1,2-intrastrand d(GpG) cisplatin cross-link and a fluorescein-modified deoxyuridine residue. Rate constants, activation parameters, and dissociation constants were determined for complexes formed by HMG1 domain A and the platinated DNA probes. The sequence context of the cisplatin adduct modulates the value of the associative rate constant for HMG1 domain A by a factor of 2-4, contributing significantly to differences in binding affinity. The rates of association or dissociation of the protein-DNA complex were similar for a 71 bp platinated DNA analogue. Additional kinetic studies performed with HMG1 domain B, an F37A domain A mutant, and the full-length HMG1 protein highlight differences in the binding properties of the HMG domains. The stopped-flow studies demonstrate the utility of the fluorescein-dU probe in studying protein-DNA complexes. The kinetic data will assist in determining what role these proteins might play in the cisplatin mechanism of action.  相似文献   

3.
Nhp6A is an abundant non-histone chromatin-associated protein in Saccharomyces cerevisiae that contains a minor groove DNA binding motif called the HMG box. In this report, we show that Nhp6Ap binds to cisplatin intrastrand cross-links on duplex DNA with a 40-fold greater affinity than to unmodified DNA with the same sequence. Nevertheless, Nhp6Ap bound to cisplatinated DNA readily exchanges onto unmodified DNA. Phenanthroline-copper footprinting and two-dimensional NMR on complexes of wild-type and mutant Nhp6Ap with DNA were employed to probe the mode of binding to the cisplatin lesion. Recognition of the cisplatin adduct requires a surface-exposed phenylalanine on Nhp6Ap that promotes bending of DNA by inserting into the helix from the minor groove. We propose that Nhp6Ap targets the cisplatin adduct by means of intercalation by the phenylalanine and that it can bind in either orientation with respect to the DNA lesion. A methionine, which also inserts between base pairs and functions in target selection on unmodified DNA, plays no apparent role in recognition of the cisplatin lesion. Basic amino acids within the N-terminal arm of Nhp6Ap are required for high-affinity binding to the cisplatin adduct as well as to unmodified DNA. Cisplatin mediates its cytotoxicity by forming covalent adducts on DNA, and we find that Deltanhp6a/b mutants are hypersensitive to cisplatin in comparison with the wild-type strain. In contrast, Deltanhp6a/b mutants are slightly more resistant to hydrogen peroxide and ultraviolet irradiation. Therefore, Nhp6A/Bp appears to directly or indirectly function in yeast to enhance cellular resistance to cisplatin.  相似文献   

4.
5.
He Q  Ohndorf UM  Lippard SJ 《Biochemistry》2000,39(47):14426-14435
Cisplatin exerts its anticancer activity by forming covalent adducts with DNA. High-mobility group (HMG)-domain proteins recognize the major 1,2-intrastrand cisplatin-DNA cross-links and can mediate cisplatin cytotoxicity. The crystal structure of HMG1 domain A bound to cisplatin-modified DNA, further analyzed here, reveals intercalation of a key Phe37 residue. Other published structures of HMG domains bound to DNA, including NHP6A and HMG-D, similarly indicate amino acid side chains intercalating into linear DNA to form a bend. To delineate the importance of such side chain intercalations and further to explore the binding modes of different HMG domains toward prebent DNA structures, site-directed mutagenesis was used to generate HMG1 domain A and domain B mutants. The affinities of these mutant proteins for cisplatin-modified DNA were determined in gel electrophoresis mobility shift assays. The results indicate that intercalating residues at positions 16 or 37 can both contribute to the binding affinity. The data further reveal that the length of the loop between helices I and II is not critical for binding affinity. Footprinting analyses indicate that the position of the intercalating residue dictates the binding mode of the domain toward platinated DNA. Both congruent and offset positioning of the HMG domain with respect to the locus of the cisplatin-induced bend in the DNA were encountered. Packing interactions in the crystal structure suggest how full-length HMG1 might bind to DNA by contacting more than one duplex simultaneously. Taken together, these results demonstrate that cisplatin modification of DNA provides an energetically favorable, prebent target for HMG domains, which bind to these targets through one or more side chain and favorable hydrophobic surface interactions.  相似文献   

6.
A nonhistone chromosomal protein, high mobility group (HMG) 1, is ubiquitous in higher eukaryotic cells and binds preferentially to cisplatin-modified DNA. HMG1 also functions as a coactivator of p53, a tumor suppressor protein. We investigated physical interactions between HMG1 and p53 and the influence of p53 on the ability of HMG1 to recognize damaged DNA. Using immunochemical coprecipitation, we observed binding of HMG1 and p53. Interaction between HMG1 and p53 required the HMG A box of HMG1 and amino acids 363-376 of p53. Cisplatin-modified DNA binding by HMG1 was significantly enhanced by p53. An HMG1-specific antibody that recognized the A box of this protein also stimulated cisplatin-modified DNA binding. These data suggest that an interaction with either p53 or antibody may induce conformational change in the HMG1 A box that optimizes DNA binding by HMG1. Interaction of p53 with HMG1 after DNA damage may promote activation of specific HMG1 binding to damaged DNA in vivo and provide a molecular link between DNA damage and p53-mediated DNA repair.  相似文献   

7.
Protein HMGB1 has long been known as one of the most abundant non-histone proteins in the nucleus of mammalian cells, and has regained interest recently for its function as an extracellular cytokine. As a DNA-binding protein, HMGB1 facilitates DNA-protein interactions by increasing the flexibility of the double helix, and binds specifically to distorted DNA structures. We have previously observed that HMGB1 binds with extremely high affinity to a novel DNA structure, hemicatenated DNA loops (hcDNA), in which double-stranded DNA fragments containing a tract of poly(CA).poly(TG) form a loop maintained at its base by a hemicatenane. Here, we show that the single HMGB1 domains A and B, the HMG-box domain of sex determination factor SRY, as well as the prokaryotic HMGB1-like protein HU, specifically interact with hcDNA (Kd approximately 0.5 nM). However, the affinity of full-length HMGB1 for hcDNA is three orders of magnitude higher (Kd<0.5 pM) and requires the simultaneous presence of both HMG-box domains A and B plus the acidic C-terminal tail on the molecule. Interestingly, the high affinity of the full-length protein for hcDNA does not decrease in the presence of magnesium. Experiments including a comparison of HMGB1 binding to hcDNA and to minicircles containing the CA/TG sequence, binding studies with HMGB1 mutated at intercalating amino acid residues (involved in recognition of distorted DNA structures), and exonuclease III footprinting, strongly suggest that the hemicatenane, not the DNA loop, is the main determinant of the affinity of HMGB1 for hcDNA. Experiments with supercoiled CA/TG-minicircles did not reveal any involvement of left-handed Z-DNA in HMGB1 binding. Our results point to a tight structural fit between HMGB1 and DNA hemicatenanes under physiological conditions, and suggest that one of the nuclear functions of HMGB1 could be linked to the possible presence of hemicatenanes in the cell.  相似文献   

8.
9.
High mobility group (HMG) proteins are nuclear proteins believed to significantly affect DNA interactions by altering nucleic acid flexibility. Group B (HMGB) proteins contain HMG box domains known to bind to the DNA minor groove without sequence specificity, slightly intercalating base pairs and inducing a strong bend in the DNA helical axis. A dual-beam optical tweezers system is used to extend double-stranded DNA (dsDNA) in the absence as well as presence of a single box derivative of human HMGB2 [HMGB2(box A)] and a double box derivative of rat HMGB1 [HMGB1(box A+box B)]. The single box domain is observed to reduce the persistence length of the double helix, generating sharp DNA bends with an average bending angle of 99 ± 9° and, at very high concentrations, stabilizing dsDNA against denaturation. The double box protein contains two consecutive HMG box domains joined by a flexible tether. This protein also reduces the DNA persistence length, induces an average bending angle of 77 ± 7°, and stabilizes dsDNA at significantly lower concentrations. These results suggest that single and double box proteins increase DNA flexibility and stability, albeit both effects are achieved at much lower protein concentrations for the double box. In addition, at low concentrations, the single box protein can alter DNA flexibility without stabilizing dsDNA, whereas stabilization at higher concentrations is likely achieved through a cooperative binding mode.  相似文献   

10.
Y Mikata  Q He  S J Lippard 《Biochemistry》2001,40(25):7533-7541
Laser-induced photo-cross-linking was investigated for DNA, modified with cisplatin at specific sites, bound to structure-specific recognition domains of proteins in the high-mobility group (HMG) class. The efficiency of photo-cross-linking depends on the wavelength and power of the laser, the nature of the protein domain, and the oligodeoxyribonucleotide sequences flanking the platinated site. Introduction of 5-iodouridine at thymine sites of the oligodeoxyribonucleotide as an additional photoreactive group did not increase the photo-cross-linking yield. Formation of platinum-mediated DNA-DNA interstrand cross-linking observed previously upon irradiation with 302 nm light [Kane, S. A., and Lippard, S. J. (1996) Biochemistry 35, 2180-2188] was significantly reduced with laser irradiation. HMG1 domain B is superior to domain A for platinum-mediated photo-cross-linking, a result attributed to the different positioning of the proteins with respect to the platinum adduct and the greater ability of domain B to access photolabilized platinum in the major groove. Studies with proteins containing specifically mutated amino acids, and with DNA probes in which the sequences flanking the platinum cross-link site were varied, suggest that the most effective photo-cross-linking occurs for protein domains bound symmetrically and flexibly to cisplatin-modified DNA. The thermodynamic equilibrium between the protein-platinated DNA complex and its components, revealed in gel electrophoretic mobility shift assays (EMSAs), is significantly shifted to the right upon irreversible photo-cross-linking. Thus, only upon photo-cross-linking can the interaction of cisplatin-DNA 1,3-intrastrand d(GpTpG) or interstrand cross-links with HMG1 domain B protein be detected. Photo-cross-linking is thus an effective tool for investigating the interaction of cisplatin-modified DNA with damage-recognition proteins under heterogeneous conditions such those in cell extracts or living cells.  相似文献   

11.
High mobility group box 1 protein (HMGB1), originally characterized as a nuclear DNA-binding protein, has also been described to have an extracellular role when it is involved in cellular activation and proinflammatory responses. In this study, FLAG-tagged HMGB1 was inducibly expressed in the presence of culture media with or without added IL-1beta, IFN-gamma, or TNF-alpha. HMGB1 purified from cells grown in culture media alone only minimally increased cytokine production by MH-S macrophages and had no effect on murine neutrophils. In contrast, HMGB1 isolated from cells cultured in the presence of IL-1beta, IFN-gamma, and TNF-alpha had enhanced proinflammatory activity, resulting in increased production of MIP-2 and TNF-alpha by exposed cells. IL-1beta was bound to HMGB1 isolated from cells cultured with this cytokine, and purified HMGB1 incubated with recombinant IL-1beta acquired proinflammatory activity. Addition of anti-IL-1beta Abs or the IL-1 receptor antagonist to cell cultures blocked the proinflammatory activity of HMGB1 purified from IL-1beta-exposed cells, indicating that such activity was dependent on interaction with the IL-1 receptor. These results demonstrate that HMGB1 acquires proinflammatory activity through binding to proinflammatory mediators, such as IL-1beta.  相似文献   

12.
13.

Background

Protein HMGB1, an abundant nuclear non-histone protein that interacts with DNA and has an architectural function in chromatin, was strikingly shown some years ago to also possess an extracellular function as an alarmin and a mediator of inflammation. This extracellular function has since been actively studied, both from a fundamental point of view and in relation to the involvement of HMGB1 in inflammatory diseases. A prerequisite for such studies is the ability to detect HMGB1 in blood or other biological fluids and to accurately measure its concentration.

Methodology/Principal Findings

In addition to classical techniques (western blot, ELISA) that make use of specific anti-HMGB1 antibodies, we present here a new, extremely sensitive technique that is based on the fact that hemicatenated DNA loops (hcDNA) bind HMGB1 with extremely high affinity, higher than the affinity of specific antibodies, similar in that respect to DNA aptamers. DNA-protein complexes formed between HMGB1 and radiolabeled hcDNA are analyzed by electrophoresis on nondenaturing polyacrylamide gels using the band-shift assay method. In addition, using a simple and fast protocol to purify HMGB1 on the basis of its solubility in perchloric acid allowed us to increase the sensitivity by suppressing any nonspecific background. The technique can reliably detect HMGB1 at a concentration of 1 pg per microliter in complex fluids such as serum, and at much lower concentrations in less complex samples. It compares favorably with ELISA in terms of sensitivity and background, and is less prone to interference from masking proteins in serum.

Conclusion

The new technique, which illustrates the potential of DNA nanoobjects and aptamers to form high-affinity complexes with selected proteins, should provide a valuable tool to further investigate the extracellular functions of HMGB1 and its involvement in inflammatory pathologies.  相似文献   

14.
HMGB1 (high-mobility group B1) is a ubiquitously expressed bifunctional protein that acts as a nuclear protein in cells and also as an inflammatory mediator in the extracellular space. HMGB1 changes its functions according to the redox states in both intra- and extra-cellular environments. Two cysteines, Cys23 and Cys45, in the A-domain of HMGB1 form a disulfide bond under oxidative conditions. The A-domain with the disulfide bond shows reduced affinity to cisplatin modified DNA. We have solved the oxidized A-domain structure by NMR. In the structure, Phe38 has a flipped ring orientation from that found in the reduced form; the phenyl ring in the reduced form intercalates into the platinated lesion in DNA. The phenyl ring orientation in the oxidized form is stabilized through intramolecular hydrophobic contacts. The reorientation of the Phe38 ring by the disulfide bond in the A-domain may explain the reduced HMGB1 binding affinity towards cisplatinated DNA.  相似文献   

15.
The structure-specific DNA-binding protein HMGB1 (high-mobility group protein B1) which comprises two tandem HMG boxes (A and B) and an acidic C-terminal tail, is acetylated in vivo at Lys(2) and Lys(11) in the A box. Mutation to alanine of both residues in the isolated A domain, which has a strong preference for pre-bent DNA, abolishes binding to four-way junctions and 88 bp DNA minicircles. The same mutations in full-length HMGB1 also abolish its binding to four-way junctions, and binding to minicircles is substantially impaired. In contrast, when the acidic tail is absent (AB di-domain) there is little effect of the double mutation on four-way junction binding, although binding to minicircles is reduced approximately 15-fold. Therefore it appears that in AB the B domain is able to substitute for the non-functional A domain, whereas in full-length HMGB1 the B domain is masked by the acidic tail. In no case does single substitution of Lys(2) or Lys(11) abolish DNA binding. The double mutation does not significantly perturb the structure of the A domain. We conclude that Lys(2) and Lys(11) are critical for binding of the isolated A domain and HMGB1 to distorted DNA substrates.  相似文献   

16.
Thermodynamics of HMGB1 interaction with duplex DNA   总被引:4,自引:0,他引:4  
Müller S  Bianchi ME  Knapp S 《Biochemistry》2001,40(34):10254-10261
The high mobility group protein HMGB1 is a small, highly abundant protein that binds to DNA in a non-sequence-specific manner. HMGB1 consists of 2 DNA binding domains, the HMG boxes A and B, followed by a short basic region and a continuous stretch of 30 glutamate or aspartate residues. Isothermal titration calorimetry was used to characterize the binding of HMGB1 to the double-stranded model DNAs poly(dAdT).(dTdA) and poly(dGdC).(dCdG). To elucidate the contribution of the different structural motifs to DNA binding, calorimetric measurements were performed comparing the single boxes A and B, the two boxes plus or minus the basic sequence stretch (AB(bt) and AB), and the full-length HMGB1 protein. Thermodynamically, binding of HMGB1 and all truncated constructs to duplex DNA was characterized by a positive enthalpy change at 15 degrees C. From the slopes of the temperature dependence of the binding enthalpies, heat capacity changes of -0.129 +/- 0.02 and -0.105 +/- 0.05 kcal mol(-1) K(-1) were determined for box A and full-length HMGB1, respectively. Significant differences in the binding characteristics were observed using full-length HMGB1, suggesting an important role for the acid tail in modulating DNA binding. Moreover, full-length HMGB1 binds differently these two DNA templates: binding to poly(dAdT).(dTdA) was cooperative, had a larger apparent binding site size, and proceeded with a much larger unfavorable binding enthalpy than binding to poly(dGdC).(dCdG).  相似文献   

17.
18.
U Schweizer  T Hey  G Lipps    G Krauss 《Nucleic acids research》1999,27(15):3183-3189
The repair proteins XPA, XPC and replication protein A (RPA) have been implicated in the primary recognition of damaged DNA sites during nucleotide excision repair. Detailed structural information on the binding of these proteins to DNA lesions is however lacking. We have studied the binding of human RPA (hRPA) and hRPA-XPA-complexes to model oligonucleo-tides containing a single 1, 3-d(GTG)-cisplatin-modification by photocrosslinking and electrophoretic mobility shift experiments. The 70 kDa subunit of hRPA can be crosslinked with high efficiency to cisplatin-modified DNA probes carrying 5-iodo-2"-deoxyuridin (5-IdU) as crosslinking chromophore. High efficiency crosslinking is dependent on the presence of the DNA lesion and occurs preferentially at its 5"-side. Examination of the crosslinking efficiency in dependence on the position of the 5-IdU chromophore indicates a specific positioning of hRPA with respect to the platination site. When hRPA and XPA are both present mainly hRPA is crosslinked to the DNA. Our mobility shift experiments directly show the formation of a stable ternary complex of hRPA, XPA and the damaged DNA. The affinity of the XPA-hRPA complex to the damaged DNA is increased by more than one order of magnitude as compared to hRPA alone.  相似文献   

19.
20.
Rice HMGB1 protein recognizes DNA structures and bends DNA efficiently   总被引:4,自引:0,他引:4  
We analyzed the DNA-binding and DNA-bending properties of recombinant HMGB1 proteins based on a rice HMGB1 cDNA. Electrophoretic mobility shift assay demonstrated that rice HMGB1 can bind synthetic four-way junction (4H) DNA and DNA minicircles efficiently but the binding to 4H can be completed out by HMGA and histone H1. Conformational changes were detected by circular dichroism analysis with 4H DNA bound to various concentrations of HMGB1 or its truncated forms. T4 ligase-mediated circularization assays with short DNA fragments of 123 bp showed that the protein is capable of increasing DNA flexibility. The 123-bp DNA formed closed circular monomers efficiently in its presence, similar to that in an earlier study on maize HMG. Additionally, our results show for the first time that the basic N-terminal domain enhances the affinity of the plant HMGB1 protein for 4H DNA, while the acidic C-terminal domain has the converse effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号