首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to analyze the effect of ischemia on low-threshold motor unit conduction velocity. Nine subjects were trained to isolate the activity of a single motor unit (target motor unit) in the abductor pollicis brevis muscle with feedback on surface EMG signals recorded with a 16-electrode linear array. After training, the subjects activated the target motor unit at approximately 8 pulses per second (pps) for five 3-min-long contractions. During the third and fourth contractions, a cuff inflated at 180 mmHg around the forearm induced ischemia of the hand. The exerted force (mean +/- SE, 4.6 +/- 2.1% of the maximal voluntary contraction force), discharge rate (8.6 +/- 0.4 pps), interpulse interval variability (34.8 +/- 2.5%), and peak-to-peak amplitude of the target motor unit action potentials (176.6 +/- 18.2 microV) were not different among the five contractions. Conduction velocity, mean power spectral frequency, and action potential duration were the same in the beginning of the five contractions (2.8 +/- 0.2 m/s, 195.2 +/- 10.5 Hz, and 5.4 +/- 0.3 ms, respectively) and changed over the 3 min of sustained activation only during the fourth contraction. Conduction velocity and mean power spectral frequency decreased (10.05 +/- 1.8% and 8.50 +/- 2.18% during the 3 min, respectively) and action potential duration increased (8.2 +/- 4.6% in the 3 min) during the fourth contraction. In conclusion, 1) subjects were able to isolate the activity of a single motor unit with surface EMG visual feedback in ischemic conditions maintained for 16 min, and 2) the activation-induced decrease in single motor unit conduction velocity was significantly larger with ischemia than with normal circulation, probably due to the alteration of mechanisms of ion exchange across the fiber membrane.  相似文献   

2.
A simple method for the quantification of tipranavir, the first non-peptidic HIV protease inhibitor, was developed and validated. Quinoxaline, as internal standard, was added to 50 microl of plasma before a liquid-liquid extraction by 600 microl of protein precipitation solution. The extracts were diluted before being injected in the chromatographic system. Chromatographic separation was made on a C18 column using potassium phosphate buffer (pH 3.2) and acetonitrile with gradient. Detection was performed by an UV detector at 260 nm. Relative error at three control quality concentrations ranged from -1.81 to 1.72%. Intra-day (CV%) and inter-day (CV%) precision ranged from 0.94 to 2.55% and from 3.07 to 4.24%, respectively. LOQ and LOD were 0.090 microg/ml and 0.035 microg/ml, respectively. Mean recovery was 87.1%+/-2.4%. Calibration curve was linear up to 180 microg/ml. Concentration range when optimized (0.703-180 microg/ml) proved to be adequate to measure tipranavir concentration in HIV-1-positive patients, therefore this method could be suitable for therapeutic drug monitoring of this drug.  相似文献   

3.
Portal glucose delivery in the conscious dog augments net hepatic glucose uptake (NHGU). To investigate the possible role of altered autonomic nervous activity in the effect of portal glucose delivery, the effects of adrenergic blockade and acetylcholine (ACh) on hepatic glucose metabolism were examined in 42-h-fasted conscious dogs. Each study consisted of an equilibration (-120 to -20 min), a control (-20 to 0 min), and a hyperglycemic-hyperinsulinemic period (0 to 300 min). During the last period, somatostatin (0.8 microg. kg(-1). min(-1)) was infused along with intraportal insulin (1.2 mU. kg(-1). min(-1)) and glucagon (0.5 ng. kg(-1). min(-1)). Hepatic sinusoidal insulin was four times basal (73 +/- 7 microU/ml) and glucagon was basal (55 +/- 7 pg/ml). Glucose was infused peripherally (0-300 min) to create hyperglycemia (220 mg/dl). In test protocol, phentolamine and propranolol were infused intraportally at 0.2 microg and 0.1 microg. kg(-1). min(-1) from 120 min on. ACh was infused intraportally at 3 microg. kg(-1). min(-1) from 210 min on. In control protocol, saline was given in place of the blockers and ACh. Hyperglycemia-hyperinsulinemia switched the net hepatic glucose balance (mg. kg(-1). min(-1)) from output (2.1 +/- 0.3 and 1.1 +/- 0.2) to uptake (2.8 +/- 0.9 and 2.6 +/- 0.6) and lactate balance (micromol. kg(-1). min(-1)) from uptake (7.5 +/- 2.2 and 6.7 +/- 1.6) to output (3.7 +/- 2.6 and 3.9 +/- 1.6) by 120 min in the control and test protocols, respectively. Thereafter, in the control protocol, NHGU tended to increase slightly (3.0 +/- 0.6 mg. kg(-1). min(-1) by 300 min). In the test protocol, adrenergic blockade did not alter NHGU, but ACh infusion increased it to 4.4 +/- 0.6 and 4.6 +/- 0.6 mg. kg(-1). min(-1) by 220 and 300 min, respectively. These data are consistent with the hypothesis that alterations in nerve activity contribute to the increase in NHGU seen after portal glucose delivery.  相似文献   

4.
The petroleum ether soluble fraction (SIPE) of the root extract of S. indicum was evaluated for the vasorelaxant activity using isolated rat aorta. SIPE up to 180 microg/ml concentration significantly inhibited phenylephrine- and KCl-induced contraction to the extent of 98.13 +/- 6.37 and 70.19 +/- 3.43% respectively in isolated rat aorta in a concentration dependent manner. The vasorelaxant activity was not blocked by propranolol (10 microM), atropine (1 microM) indomethacin (10 microM) and glibenclamide (10 microM). Influence of SIPE on phenylephrine-induced contractions in aortic preparations in absence of functional endothelium and on pre-incubating the tissue with L-NAME (300 microM) or methylene blue (10 microM) was also studied. SIPE at 180 microg/ml concentration could elicit partial relaxation in presence of L-NAME or methylene blue to the extent of 34.26 +/- 6.13 and 25.66 +/- 10.95% respectively. However, in absence of functional endothelium, SIPE exhibited little relaxation to the extent of 6.70 +/- 4.87%. These studies revealed that the vasorelaxant activity of SIPE was chiefly mediated through endothelium-dependent pathway.  相似文献   

5.
Epidemiological studies show that increases in particulate air pollution (PM) are associated with increases in cardiopulmonary morbidity and mortality. However, the mechanism(s) underlying the cardiac effects of PM remain unknown. We used pharmacological strategies to determine whether oxidants are implicated in PM-dependent cardiac dysfunction and whether PM-induced increase in autonomic stimulation on the heart mediates cardiac oxidative stress and toxicity. Adult Sprague-Dawley rats were exposed to either intratracheal instillation of urban air particles (UAP 750 microg) or to inhalation of concentrated ambient particles (CAPs mass concentration 700+/-180 microg/m3) for 5 h. Oxidative stress and cardiac function were evaluated 30 min after UAP instillation or immediately after exposure to CAPs. Instillation of UAP led to significant increases in heart oxidants measured as organ chemiluminescence (UAP: 38+/-5 cps/cm2, sham: 10+/-1 cps/cm2) or thiobarbituric acid reactive substances (TBARS, UAP: 76+/-10, Sham 30+/-6 pmol/mg protein). Heart rate increased immediately after exposure (UAP: 390+/-20 bpm, sham: 350+/-10 bpm) and returned to basal levels over the next 30 min. Heart rate variability (SDNN) was unchanged immediately after exposure, but significantly increased during the recovery phase (UAP: 3.4+/-0.2, Sham: 2.4+/-0.3). To determine the role of ROS in the development of cardiac malfunction, rats were treated with 50 mg/kg N-acetylcysteine (NAC) 1 h prior to UAP instillation or CAPs inhalation. NAC prevented changes in heart rate and SDNN in UAP-exposed rats (340+/-8 and 2.9+/-0.3, respectively). To investigate the role of the autonomic nervous system in PM-induced oxidative stress, rats were given 5 mg/kg atenolol (beta-1 receptor antagonist), 0.30 mg/kg glycopyrrolate (muscarinic receptor antagonist) or saline immediately before exposure to CAPs aerosols. Both atenolol and glycopyrrolate effectively prevented CAPs-induced cardiac oxidative stress (CL(ATEN): 11+/-1 cps/cm2, CL(GLYCO): 10+/-1 cps/cm2, TBARS(ATEN): 40+/-6 pmol/mg protein, TBARS(GLYCO): 38+/-6 pmol/mg protein). These data indicate that PM exposure increases cardiac oxidants via autonomic signals and the resulting oxidative stress is associated with significant functional alterations in the heart.  相似文献   

6.
The influences of exogenous vasoactive intestinal peptide (VIP) and substance P on the release of peroxidase from acini and true tissue kallikrein (rK1) from granular ducts of the rat submandibular gland were studied during continuous parasympathetic stimulation. Parasympathetic nerve impulses caused a moderate flow of saliva (mean +/- SD, 108+/-26 microl/g tissue/min) that had a low protein concentration (174+/-88 microg/ml). The outputs of peroxidase and rK1 were minimal (14.3+/-11.8 pmol DCF/g tissue/min and 6.5+/-3.4 nmol AFC/g tissue/min, respectively). When administered intravenously, VIP had no apparent effect on the overall flow rate, but caused a significant increase in the output of peroxidase; 450% at 1 microg/kg and a further 10-fold increase at 10 microg/kg. In contrast, substance P (1 microg/kg) evoked a marked increase in flow rate (68%), and peroxidase secretion increased only 3-fold. The output of rK1 was unaffected by either VIP or substance P. Our results support the hypothesis that acinar, but not granular duct, protein secretion is evoked by non-adrenergic, non-cholinergic peptides released from parasympathetic nerve terminals.  相似文献   

7.
The purpose of this study was to examine how upper thoracic spinal neurons responded to activation and desensitization of cardiac transient receptor potential vanilloid-1 (TRPV1)-containing afferent fibers. Extracellular potentials of single T3 spinal neurons were recorded in pentobarbital-anesthetized, paralyzed, and ventilated male rats. To activate cardiac nociceptive receptors, a catheter was placed in the pericardial sac to administer various chemicals: bradykinin (BK; 10 microg/ml, 0.2 ml), capsaicin (CAP, 10 microg/ml, 0.2 ml), or a mixture of algesic chemicals (AC; 0.2 ml) containing adenosine 10(-3) M, BK, serotonin, histamine, and PGE(2), 10(-5) M for each. Spinal neurons that responded to intrapericardial BK and/or CAP were used in this study. Results showed that 81% (35/43) of the neurons had excitatory responses to both intrapericardial BK and CAP, and the remainder responded to either BK or CAP. Intrapericardial resiniferatoxin (RTX) (0.2 microg/ml, 0.2 ml, 1 min), which desensitizes TRPV1-containing nerve endings, abolished excitatory responses to both BK (n = 8) and CAP (n = 7), and to AC (n = 5) but not to somatic stimuli. Intrapericardial capsazepine (1 mg/ml, 0.2 ml, 3 min), a specific antagonist of TRPV1, sharply attenuated excitatory responses to CAP in 5/5 neurons, but responses to BK in 5/5 neurons was maintained. Additionally, intrapericardial capsazepine had no significant effect on excitatory responses to AC in 3/3 neurons. These data indicated that intrapericardial BK-initiated spinal neuronal responses were linked to cardiac TRPV1-containing afferent fibers, but were not dependent on TRPV1. Intraspinal signaling for cardiac nociception was mediated through CAP-sensitive afferent fibers innervating the heart.  相似文献   

8.
Cardiovascular effects of an essential oil from the aerial parts of Mentha x villosa (OEMV) were tested in rats using a combined in vivo and in vitro approach. In non-anesthetized normotensive rats, OEMV (1, 5, 10, 20, 30 mg kg(-1) body wt., i.v.) induced a significant and dose-dependent hypotension (-3 +/- 1.8%; -6 +/- 0.7%; -40 +/- 6.7%; -58 +/- 3.8%; -57 +/- 2.1%, respectively) associated with decreases in heart rate (-1 +/- 0.3%; -9 +/- 0.9%; -17 +/- 3.2%; -72 +/- 3.1%; -82 +/- 1.4%, respectively). The hypotensive and bradycardic responses evoked by OEMV were attenuated and blocke by pre-treatment of the animals with atropine (2 mg kg(-1) body wt., i.v.). In isolated rat atrial preparations, OEMV (10, 100, 300, 500 microg ml(-1)) produced concentration-related negative chronotropic and inotropic effects (IC50 value = 229 +/- 17 and 120 +/- 13 microg ml(-1), respectively). In isolated rat aortic rings, increasing concentrations of OEM (10, 100, 300, 500 microg ml(-1)) were able to antagonize the effects of phenylephrine (1 microM), prostaglandin F2alpha (10 microM) and KCl (80 mM)-induced contractions (IC50 value = 255 +/- 9, 174 +/- 4 and 165 +/- 14 microg ml(-1), respectively). The vasorelaxant activity induced by OEMV was attenuated significantly by either endothelium removal (IC50 value = 304 +/- 9 microg ml(-1)), NG-nitro L-arginine methyl ester (L-NAME) 100 microM (IC50 value=359 +/- 18 microg ml(-1)), L-NAME 300 microM (IC50 value = 488 +/- 20 microg ml(-1)) or indomethacin 10 microM (IC50 value = 334 +/- 18 microg ml(-1)). However, it was not affected by atropine 1 microM (IC50 value = 247 +/- 12 microg ml(-1)). Furthermore, the hypotensive response induced by OEMV was attenuated significantly after nitric oxide (NO) synthase blockade (L-NAME, 20 mg kg(-1) body wt., i.v.), while bradycardia was not altered. The results suggest that the hypotensive effect induced by OEMV is probably due to its direct cardiodepressant action and peripheral vasodilation, which can be attributed to both endothelium-dependent (via EDRFs, at least NO and prostacyclin) and endothelium-independent mechanisms (such as Ca2+ channel blockade).  相似文献   

9.
Alpinia zerumbet (Pers.) Burtt. et Smith is an aromatic plant that is distributed widely in the tropical and sub-tropical regions of the world. In Brazil, where A. zerumbet is called "colonia", it is used widely in folk medicine for the treatment of various diseases, including hypertension. In the present study, the antinociceptive effects of the orally administered essential oil of A. zerumbet (EOAz) were evaluated in male Swiss mice (20-25 g each). In the acetic acid-induced writhing test, EOAz (30, 100 and 300 mg/kg body wt.; n = 10, n = 13 and n = 15, respectively) was effective at all doses. In the hot-plate test, EOAz significantly increased the latency at doses of 100 and 300 mg/kg body wt., but not at 30 mg/kg body wt., at all observation times up to the 180th min (n = 10 for each dose). In the formalin test, EOAz significantly reduced paw licking time in the second phase of the test at 100 mg/kg body wt. (n = 10), but decreased it in both phases at 300 mg/kg body wt. (n = 10). At 30 mg/kg body wt., the effect of EOAz did not differ from control values in either phase of the formalin test (n = 10). Pretreatment with naloxone (5 mg/kgbodywt., i.p.) caused a significant reversal of the analgesic effect of 300 mg/kg body wt. EOAz (n = 8) that was complete for the first phase, but only partial for the second phase of the formalin test. The data show that orally administered OEAz promotes a dose-dependent antinociceptive effect, with a mechanism of action which probably involves the participation of opiate receptors.  相似文献   

10.
Effects of a short-term exposure to millimeter waves (CW, 40–52 GHz, 0.24–3.0 mW/cm2) on the compound action potential (CAP) conduction were studied in an isolated frog sciatic nerve preparation. CAPs were evoked by either a low-rate or a high-rate electrical stimulation of the nerve (4 and 20 paired pulses/s, respectively). The low-rate stimulation did not alter the functional state of the nerve, and the amplitude, latency, and peak latency of CAPs could stay virtually stable for hours. Microwave irradiation for 10–60 min at 0.24–1.5 mW/cm2, either at various constant frequencies or with a stepwise frequency change (0.1 or 0.01 GHz/min), did not cause any detectable changes in CAP conduction or nerve refractoriness. The effect observed under irradiation at a higher field intensity of 2–3 mW/cm2 was a subtle and transient reduction of CAP latency and peak latency along with a rise of the test CAP amplitude. These changes could be evoked by any tested frequency of the radiation; they reversed shortly after cessation of exposure and were both qualitatively and quantitatively similar to the effect of conventional heating of 0.3–0.4°C. The high-rate electrical stimulation caused gradual and reversible decrease of the amplitude of conditioning and test CAPs and increased their latencies and peak latencies. These changes were essentially the same with and without irradiation (2.0–2.7 or 0.24–0.28 mW/cm2), except for attenuation of the decrease of the test CAP amplitude. This effect was observed at both field intensities, but was statistically significant only for certain frequencies of the radiation. Within the studied limits, this effect appeared to be dependent on the frequency rather than on the intensity of the radiation, but this observation requires additional experimental confirmation. Bioelectromagnetics 18:324–334, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
We tested the hypothesis that glucose-insulin-potassium (GIK)-induced protection against myocardial infarction depends on ATP-dependent K(+) (K(ATP)) channel activation and is abolished by hyperglycemia before the ischemia. Dogs were subjected to a 60-min coronary artery occlusion and 3-h reperfusion in the absence or presence of GIK (25% dextrose; 50 IU insulin/l; 80 mM/l KCl infused at 1.5 ml x kg(-1) x h(-1)) beginning 75 min before coronary artery occlusion or 5 min before reperfusion. The role of K(ATP) channels was evaluated by pretreatment with glyburide (0.1 mg/kg). The efficacy of GIK was investigated with increases in blood glucose (BG) concentrations to 300 or 600 mg/dl or experimental diabetes (alloxan/streptozotocin). Infarct size (IS) was 29 +/- 2% of the area at risk in control experiments. GIK decreased (P < 0.05) IS when administered beginning 5 min before reperfusion. This protective action was independent of BG (13 +/- 2 and 12 +/- 2% of area at risk; BG = 80 or 600 mg/dl, respectively) but was abolished in dogs receiving glyburide (30 +/- 4%), hyperglycemia before ischemia (27 +/- 4%), or diabetes (25 +/- 3%). IS was unchanged by GIK when administered before ischemia independent of BG (31 +/- 3, 27 +/- 2, and 35 +/- 3%; BG = 80, 300, and 600 mg/dl, respectively). The insulin component of GIK promotes cardioprotection by K(ATP) channel activation. However, glucose decreases K(ATP) channel activity, and this effect predominates when hyperglycemia is present before ischemia.  相似文献   

12.
Insulin is known to increase blood flow in parallel to glucose uptake in skeletal muscle. However, it is not known if an increase in blood flow by itself is associated with an increase in glucose uptake in the absence of hyperinsulinemia. To investigate further this matter, the effect of increased blood flow on forearm glucose uptake was studied in the fasting state during intra-arterial infusions of two different vasodilators, metacholine and nitroprusside, in 19 hypertensive subjects. Both metacholine (4 microg/min) and nitroprusside (10 microg/min) increased resting forearm blood flow, measured by venous occlusion plethysmography, to a similar degree (180 % and 170 %, respectively, p<0.0001 for both). However, metacholine infusion increased the forearm glucose uptake from 2.0+/-0.9 (S.D.) during rest to 5.5+/-3.0 umol/min/100 ml tissue (p<0.0001), while no significant change in glucose uptake was seen during nitroprusside infusion (2.3+/-1.4 micromol/min/100 ml tissue). In conclusion, vasodilatation induced by metacholine, but not by nitroprusside, increased glucose uptake in the forearm of hypertensive patients. Thus, an increase in forearm blood flow does not necessarily improve glucose uptake in the forearm during the fasting state.  相似文献   

13.
The inhibition of neuraminidase from Clostridium chauvoei (jakari strain) with partially purified methanolic extracts of some plants used in Ethnopharmacological practice was evaluated. Extracts of two medicinal plants, Tamarindus indicus and Combretum fragrans at 100-1000 microg/ml, both significantly reduced the activity of the enzyme in a dose-dependent fashion (P < 0.001). The estimated IC50 values for Tamarindus indicus and Combretum fragrans were 100 and 150 microg/ml respectively. Initial velocity studies conducted, using fetuin as substrate revealed a non-competitive inhibition with the Vmax significantly altered from 500 micromole min(-1) mg(-1) to 240 micromole min(-1) mg(-1) and 340 micromole min(-1) mg(-1) in the presence of Tamarindus indicus and Combretum fragrans respectively. The KM remained unchanged at 0.42 mM. The computed Index of physiological efficiency was reduced from 1.19min(-1) to 0.57min(-1) and 0.75min(-1) with Tamarindus indicus and Combretum fragrans as inhibitors respectively.  相似文献   

14.
1. The C elevation of the compound action potential (CAP) was recorded with suction electrodes from dorsal roots of rats at 25 degrees C and toads (Bufo bufo) at 10 degrees C. The C fibre CAP had a conduction velocity of 0.5 +/- 0.07 SE M per sec (N = 10) and 0.25 +/- 0.04 M per sec (N = 8) in the rat and toad nerves respectively. 2. The depressant effect of applied drugs on the amplitude of the C fibres CAP was measured. Nerves from both species had similar sensitivities to GABA. EC50 5.0 microM +/- 0.5 SEM (N = 3) and 5.5 microM +/- 1.4 (N = 3) for the rat and toad respectively. Maximum depressant effects of GABA produced in rat and toad nerves were 35% +/- 5 SEM and 17% +/- 2.5 respectively. 3. In five out of ten of the rat nerves tested kainate had a clear depressant effect (maximum 36% +/- 4.3 SEM, EC50 6.8 microM +/- 0.9 SEM, N = 3) on the C fibre CAP. Kainate, at concentrations from 100 to 500 microM, had no effect on seven toad nerves. 4. Toad nerves were about 100 times less sensitive, than rat nerves, to capsaicin (ED50 values 430 microM +/- 190 SEM and 0.7 microM +/- 0.2 respectively, N = 4). 5. The similar sensitivity of nerves in both species to GABA and differing sensitivities to kainate and capsaicin suggests that amphibian C fibres specifically lack sensitivity to capsaicin and kainate.  相似文献   

15.
A new method for estimating the distribution of conduction velocities (DCV) of peripheral nerve fibers has been developed. It also enables estimation of single nerve fiber action potential (SFAP), which agrees with the physiological knowledge. Two compound nerve action potentials (CAPs) elicited by electrical stimulation of a nerve bundle were recorded at different conduction distances. The distances between the stimulation and recording electrodes were measured on the skin surface along the nerve bundle. Starting with an arbitrary SFAP, the first estimated DCV was calculated from a CAP by the regularized non-negative least squares method. The next SFAP was then calculated by deconvolution of the other CAP and the estimated DCV. A lowpass filter with an appropriate cutoff frequency was used to obtain better conversion. The process was iterated until the CAP error defined as /CAP(calculated)-CAP/(2) was small enough. The conduction distances contained errors in measurement, especially in the distal segment, that distorted the estimated results. The Fibonacci search, therefore, was adopted to optimize the distance according to the CAP error. The accuracy of this method was demonstrated by a simulation study performed with two CAPs calculated from an arbitrary bimodal DCV and a biphasic SFAP to which a Gaussian white noise was added. The reliability of this method was checked in normal subjects by recording a pair of CAPs elicited by stimulation of the median nerve at the wrist and the elbow.  相似文献   

16.
Although the endocrine disruptor bisphenol A (BPA) is reported to inhibit nerve conduction, the underlying mechanisms are unclear. Therefore, in the present study, we examined the effect of BPA on compound action potentials (CAPs) recorded from the frog sciatic nerve using the air-gap method. Treatment of the sciatic nerve with BPA (0.5 mM) for 20 min reduced the peak amplitude of the CAP by approximately 60% in a partially reversible manner. The reduction in the CAP peak amplitude was concentration-dependent, with a half-maximal inhibitory concentration (IC50) value of 0.31 mM. This effect of BPA was unaffected by an estrogen-receptor antagonist, 4-hydroxytamoxifen, which by itself reduced CAP peak amplitude, with an IC50 value of 0.26 mM (comparable to that of BPA). The natural estrogen 17β-estradiol, at the highest dissolvable concentration (0.05 mM), had an effect similar to that of BPA. The IC50 value of BPA was comparable to those of some local anesthetics in inhibiting frog CAPs. Our findings suggest that BPA inhibits nerve conduction in a manner independent of estrogen receptors. This action of BPA may underlie, at least in part, the neurotoxicity of the compound.  相似文献   

17.
The present investigation was carried out to know the effect of Ca2+ on different peaks of compound action potential (CAP) representing the fibers having different conduction velocity. CAP was recorded from a thin bundle of nerve fibers obtained from desheathed frog sciatic nerve. Suction electrodes were used for stimulating and recording purposes. In Ca2+ -free amphibian Ringer, two distinct peaks (Peak-I and Peak-II) were observed. The threshold, conduction velocity (CV), amplitude and duration of Peak-I were 0.32 +/- 0.02 V, 56 +/- 3.0 m/sec, 2.1 +/- 0.2 mV and 0.75 +/- 0.1 ms, respectively. The Peak-II exhibited ten times greater threshold, eight times slower CV, three times lower amplitude and four times greater duration as compared to Peak-I. Addition of 2 mM Ca2+ in the bathing medium did not alter CAP parameters of Peak-I excepting 25% reduction in CV. But, in Peak-II there was 70-75% reduction in area and amplitude. The concentration-attenuation relation of Peak-II to various concentrations of Ca2+ was nonlinear and 50% depression occurred at 0.35 mM of Ca2+. Washing with Ca2+ -free solution with or without Mg2+ (2 mM)/verapamil (10 microM) could not reverse the Ca2+ -induced changes in Peak-II. Washing with Ca2+ -free solution containing EDTA restored 70% of the response. The results indicate that Ca2+ differentially influence fast and slow conducting fibers as the activity of slow conducting fibers is greatly suppressed by external calcium.  相似文献   

18.
The effect of small amounts of fructose on net hepatic glucose uptake (NHGU) during hyperglycemia was examined in the presence of insulinopenia in conscious 42-h fasted dogs. During the study, somatostatin (0.8 microg.kg(-1).min(-1)) was given along with basal insulin (1.8 pmol.kg(-1).min(-1)) and glucagon (0.5 ng.kg(-1).min(-1)). After a control period, glucose (36.1 micromol.kg(-1).min(-1)) was continuously given intraportally for 4 h with (2.2 micromol.kg(-1).min(-1)) or without fructose. In the fructose group, the sinusoidal blood fructose level (nmol/ml) rose from <16 to 176 +/- 11. The infusion of glucose alone (the control group) elevated arterial blood glucose (micromol/ml) from 4.3 +/- 0.3 to 11.2 +/- 0.6 during the first 2 h after which it remained at 11.6 +/- 0.8. In the presence of fructose, glucose infusion elevated arterial blood glucose (micromol/ml) from 4.3 +/- 0.2 to 7.4 +/- 0.6 during the first 1 h after which it decreased to 6.1 +/- 0.4 by 180 min. With glucose infusion, net hepatic glucose balance (micromol.kg(-1).min(-1)) switched from output (8.9 +/- 1.7 and 13.3 +/- 2.8) to uptake (12.2 +/- 4.4 and 29.4 +/- 6.7) in the control and fructose groups, respectively. Average NHGU (micromol.kg(-1).min(-1)) and fractional glucose extraction (%) during last 3 h of the test period were higher in the fructose group (30.6 +/- 3.3 and 14.5 +/- 1.4) than in the control group (15.0 +/- 4.4 and 5.9 +/- 1.8). Glucose 6-phosphate and glycogen content (micromol glucose/g) in the liver and glucose incorporation into hepatic glycogen (micromol glucose/g) were higher in the fructose (218 +/- 2, 283 +/- 25, and 109 +/- 26, respectively) than in the control group (80 +/- 8, 220 +/- 31, and 41 +/- 5, respectively). In conclusion, small amounts of fructose can markedly reduce hyperglycemia during intraportal glucose infusion by increasing NHGU even when insulin secretion is compromised.  相似文献   

19.
The objective of this study was to find out whether prostaglandin endoperoxide synthase (PHS) involves the action of betel nut extract (BNE) on the growth of oral cancers. Therefore, growth and PHS activity were examined in two human oral carcinoma cell lines (OEC-M1 and KB) and one normal fibroblast cell line (NF) in the presence of increasing BNE concentration. BNE at concentrations above 50 microg/ml significantly inhibited the cell growth of OEC-M1 after 72 h in culture, of KB and NF after 48 h in culture. The IC50 of BNE in OEC-M1, KB and NF at 24 h in culture was about 406, 37.5 and 140 microg/ml respectively. PHS activity in OEC-M1 was significantly increased by low BNE concentrations (50 microg/ml, 114%; 100 microg/ml, 33%; 150 microg/ml, 30%) but significantly reduced at higher BNE concentrations (300 microg/ml, 33%; 500 microg/ml, 61%). The PHS activity in KB was significantly inhibited by BNE and this effect was intensified as concentrations increased (50 microg/ml, 31%; 100 microg/ml, 24%; 150 microg/ml, 43%; 300 microg/ml, 60%; 500 microg/ml, 92%). Similar to that in OEC-M1, the PHS activity in NF was significantly increased at low BNE concentrations (50 microg/ml, 139%; 100 microg/ml, 87%;150 microg/ml, 77%) but reduced at higher concentrations (300 microg/ml, 55%; 500 microg/ml, 72%). The PHS activity in all cell lines was almost completely blocked by indomethacin (5 x 10(-6) M). We conclude that these findings suggest that PHS may be an important biochemical mediator of the effect of BNE on the growth of two human oral carcinoma cell lines.  相似文献   

20.
After an initial compensatory phase, hemorrhage reduces blood pressure due to a widespread reduction of sympathetic nerve activity (decompensatory phase). Here, we investigate the influence of intracerebroventricular naloxone (opioid-receptor antagonist) and morphine (opioid-receptor agonist) on the two phases of hemorrhage, central and peripheral hemodynamics, and release of vasopressin and renin in chronically instrumented conscious sheep. Adult ewes were bled (0.7 ml x kg(-1) x min(-1)) from a jugular vein until mean arterial blood pressure (MAP) reached 50 mmHg. Starting 30 min before and continuing until 60 min after hemorrhage, either artificial cerebrospinal fluid (aCSF), naloxone, or morphine was infused intracerebroventricularly. Naloxone (200 microg/min but not 20 or 2.0 microg/min) significantly increased the hemorrhage volume compared with aCSF (19.5 +/- 3.2 vs. 13.9 +/- 1.1 ml/kg). Naloxone also increased heart rate and cardiac index. Morphine (2.0 microg/min) increased femoral blood flow and decreased hemorrhage volume needed to reduce MAP to 50 mmHg (8.9 +/- 1.5 vs. 13.9 +/- 1.1 ml/kg). The effects of morphine were abolished by naloxone at 20 microg/min. It is concluded that the commencement of the decompensatory phase of hemorrhage in conscious sheep involves endogenous activation of central opioid receptors. The effective dose of morphine most likely activated mu-opioid receptors, but they appear not to have been responsible for initiating decompensation as 1) naloxone only inhibited an endogenous mechanism at a dose much higher than the effective dose of morphine, and 2) the effects of morphine were blocked by a dose of naloxone, which, by itself, did not delay the decompensatory phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号