首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell cycle (nuclear division cycle) of a multinucleate green alga, Boergesenia forbesii (Harvey) Feldmann was studied using microspectrophotometry and BrdU incorporation techniques. Mitosis was observed frequently 1-4 h after the beginning of the light period, on a 16:8 h LD cycle at 25°C. Mitotic nuclei formed discrete patches. Other nuclei remained in the G1 period. The DNA synthetic phase (S phase) was estimated to last about 12 h from microspectrophotometric study using aphidicolin inhibition just before the S phase and release from it. The G2 period was estimated to be about 2 h, because a labeled prophase nucleus could be detected when the samples were labeled with BrdU continuously over 3 h. The incorporation pattern of BrdU changed through the S phase nucleus. In early S phase, BrdU staining was detected as many dots in the entire nucleus, while in late S phase, it was detected as several discrete regions along the nuclear membrane. Almost all nuclei in B. forbesii were in the G1 stage after nuclear division, and the nuclei in several patches of the cell simultaneously initiated DNA synthesis. Once the nuclei entered into S phase, these nuclei continued into G2 and mitosis. In other words, the cell cycle regulation of entrance into S phase from G1 is an important factor in the growth and morphogenesis in B. forbesii.  相似文献   

2.
The transformation from the asexual proliferative stage of Tetrahymena to the sexual stage, during which cells of complementary mating types pair and nuclear fertilization occurs, provides an opportunity to study the relationship between the division cycle and differentiation. Conjugation is induced in cells starved for at least 2 hr by mixing complementary mating types. To determine the effect of starvation on the cell cycle, dividing cells were selected from a log growth culture and stepped down to non-nutrient conditions. The G1 stage is operationally divisible into two sectors, A and B. In the A stage, cells arrest in nutrient-free medium. In the B stage, they proceed through the division cycle. Arrested G1A cells may conjugate directly when challenged with similar cells of a complementary mating type. It is thereby demonstrated that Tetrahymena cells in G1A can be directed to divide (nutrient conditions) or can be directed to differentiate (non-nutrient conditions plus complementary mating type) without an intervening division cycle. This rules out a requirement for reprogramming via chromosomal replication or cell division and suggests that G1A is a stage during which the division/differentiation decision is made in direct response to ambient conditions.  相似文献   

3.
The model is based on the assumption that the cell cycle contains a Go-phase which cells leave randomly with a constant probability per unit time, γ. After leaving the Go-phase, the cells enter the C-phase which ends with cell division. The C-phase and its constituent phases, the‘true’G1-phase, the S-phase, the G2-phase and mitosis are assumed to have constant durations of T, T1Ts, T2 and Tm, respectively. For renewal tissue it is assumed that the probability per unit time of being lost from the population is a constant for all cells irrespective of their position in the cycle. The labelled mitosis curve and labelling index for continuous labelling are derived in terms of γ, T, and Ts. The model generates labelled mitosis curves which damp quickly and reach a constant value of twice the initial labelling index, if the mean duration of the Go-phase is sufficiently long. It is shown that the predicted labelled mitosis and continuous labelling curves agree reasonably well with the experimental curves for the hamster cheek pouch if T has a value of about 60 hr. Data are presented for the rat dorsal epidermis which support the assumption that there is a constant probability per unit time of a cell being released from the Go-phase.  相似文献   

4.
Observation of division of individual cells in microdrops, plus autoradiographic studies using tritiated thymidine and standard cell cycle analysis techniques, reveal that hydroxyurea (10 DIM) reversibly arrests the normal progression of exponentially growing Tetrahymena pyriformis through the initial 92 % of S-phase while not affecting cells in the terminal 8 % and in G2 and division. Thus the fraction of the population of cells that is in G2 can be approximately determined by the fraction of the population able to divide in the presence of hydroxyurea. This fraction can be related to the approximate duration of G2 by calculations which compensate for the age gradient.  相似文献   

5.
6.
M. Wierzbicka 《Protoplasma》1999,207(3-4):186-194
Summary Allium cepa (L.) adventitious roots were treated with lead (2.5 mg of Pb2+ [from Pb(NO3)2] per dm3) for 30–72 h. The cell cycle was studied by pulse labeling with [3H]thymidine. Mitotic activity kinetics, occurrence of disturbed mitoses (c-mitoses), and level of DNA synthesis were examined. It was found that lead prolonged the cell cycle and that cells in two phases of the cycle, G2 and S, differed in their sensitivity to lead. Cells in G2 were more sensitive; lead lengthened their cycle by 216% and disturbed the course of cell division by causing c-mitoses. Cells in S phase were less sensitive. Their cell cycle was longer by 55%. They went through their G2 phase without major disturbances, mitosis in these cells was normal. During treatment ofA. cepa with lead, its destructive effects on cells were exerted only during the first few hours (around 6 h) of incubation. That is when the inhibition of mitotic activity, numerous disturbances of cell division, a decline in the number of cells synthesizing DNA, and a lower level of DNA synthesis were observed. As the incubation continued, the above processes were found to return to normal. In the discussion, data are presented supporting the hypothesis that during the initial period of exposure ofA. cepa to lead, this metal enters both the root apoplast and symplast, exerting a destructive effect on cells, while later, lead penetrates only into the root apoplast, and in this way remains harmless to cells.  相似文献   

7.
We prepared single cell clones from two ovarian carcinoma cell lines, CA-OV3 and SK-OV3, and analyzed the effect of all-trans-RA treatment on cell division, DNA synthesis, and cell cycle stage distribution of these single cell clones. Our results show that despite the well-known heterogeneous nature of these cell lines, all single cell clones of SK-OV3 cells are resistant to the growth inhibitory effects of all-trans-RA. In contrast, all single cell clones of CA-OV3 cells were growth inhibited by all-trans-RA. However, the extent of growth inhibition did vary somewhat from clone to clone. Additional studies employing flow cytometry showed that all-trans-RA blocked CA-OV3 cell cycle progression in the G1stage. Finally, all-trans-RA was able to inhibit G1progression in growth-arrested CA-OV3 cells following stimulation with fetal bovine serum, insulin, IGF-1, or estrogen. Since each of these growth factors is known to act via distinct signal transduction pathways, our results suggest that all-trans-RA blocks G1progression by targeting a downstream process or event which occurs at a point after the insulin/IGF-1, estrogen, and serum signal transduction pathways converge.  相似文献   

8.
Reversible phosphorylation of proteins by kinases and phosphatases plays a key regulatory role in several eukaryotic cellular functions including the control of the division cycle. Increasing numbers of sequence and biochemical data show the involvement of cyclin-dependent kinases (CDKs) and cyclins in regulation of the cell cycle progression in higher plants. The complexity represented by different types of CDKs and cyclins in a single species such as alfalfa, indicates that multicomponent regulatory pathways control G2/M transition. A set of cdc2-related genes (cdc2Ms A, B, D and F) was expressed in G2 and M cells. Phosphorylation assays also revealed that at least three kinase complexes (Cdc2Ms A/B, D and F) were successively active in G2/M cells after synchronization. Interaction between alfalfa mitotic cyclin (Medsa;CycB2;1) and a kinase partner has been reported previously. The present yeast two-hybrid analyses showed differential interaction between defined D-type cyclins and Cdc2Ms kinases functioning in G2/M phases. Localization of Cdc2Ms F kinase to the preprophase band (PPB), the perinuclear ring in early prophase, the mitotic spindle and the phragmoplast indicated a pivotal role for this kinase in mitotic plant cells. So far limited research efforts have been devoted to the functions of phosphatases in the control of plant cell division. A homologue of dual phosphatase, cdc25, has not been cloned yet from alfalfa; however tyrosine phosphorylation was indicated in the case of Cdc2Ms A kinase and the p13suc1-bound kinase activity was increased by treatment of this complex with recombinant Drosophila Cdc25. The potential role of serine/threonine phosphatases can be concluded from inhibitor studies based on okadaic acid or endothall. Endothall elevated the kinase activity of p13suc1-bound fractions in G2-phase alfalfa cells. These biochemical data are in accordance with observed cytological abnormalities. The present overview with selected original data outlines a conclusion that emphasizes the complexity of G2/M regulatory events in flowering plants.  相似文献   

9.
Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex‐specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down‐regulation of genes involved in both G1‐ and G2‐phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells.  相似文献   

10.
Dividing pairs or single cells of the large dinoflagellate, Pyrocystis fusiformis Murray, were isolated in capillary tubes and their morphology was observed over a number of days, either in a light-dark cycle or in constant darkness. Morphological stages were correlated with the first growth stage, G1, DNA synthesis, S, the second growth stage, G2, mitosis, M, and cytokinesis, C, segments of the cell division cycle. The S phase was identified by measuring the nuclear DNA content of cells of different morphologies by the fluorescence of 4′, 6-diamidino-2-phenylindole dichloride.

Cells changed from one morphological stage to the next only during the night phase of the circadian cycle, both under light-dark conditions and in continuous darkness. Cells in all segments of the cell division cycle displayed a circadian rhythm in bioluminescence. These findings are incompatible with a mechanism for circadian oscillations that invokes cycling in Gq, an hypothesized side loop from G1. All morphological stages, not only division, appear to be phased by the circadian clock.

  相似文献   

11.
SYNOPSIS. Relationships between the cell cycle and the beginning of conjugation were analyzed for 3 hypotrichs: Diophrys scutum, Oxytricha bifaria, and Euplotes crassus. The first 2 species enter conjugation with micronuclei in G1; the latter species with a micronucleus in G2. The 1st micronuclear division of conjugating E. crassus is mitotic. Thus meiotic DNA replication occurs when the cells of each species have already entered the mating process. Cells from asynchronous populations start conjugation with their macronuclei primarily in G1 or more rarely at the beginning of the S stage in a percentage significantly different from that expected on the basis of random mating among all cells in the population. Also, macronuclear replication, when already begun, was blocked in cells undergoing conjugation. Therefore only the G1 or the very early S stages of the cell cycle are compatible with conjugation in the 3 analyzed species.  相似文献   

12.
Endosymbiosis is an intriguing plant–animal interaction in the dinoflagellate–Cnidaria association. Throughout the life span of the majority of corals, the dinoflagellate Symbiodinium sp. is a common symbiont residing inside host gastrodermal cells. The mechanism of regulating the cell proliferation of host cells and their intracellular symbionts is critical for a stable endosymbiotic association. In the present study, the cell cycle of a cultured Symbiodinium sp. (clade B) isolated from the hermatypic coral Euphyllia glabrescens was investigated using flow cytometry. The results showed that the external light–dark (L:D) stimulation played a pivotal role in regulating the cell cycle process. The sequential light (40–100 μmol m−2 s−1 ~ 12 h) followed by dark (0 μmol m−2 s−1 ~ 12 h) treatment entrained a single cell cycle from the G1 to the S phase, and then to the G2/M phase, within 24 h. Blue light (~450 nm) alone mimicked regular white light, while lights of wavelengths in the red and infrared area of the spectrum had little or no effect in entraining the cell cycle. This diel pattern of the cell cycle was consistent with changes in cell motility, morphology, and photosynthetic efficiency (F v /F m ). Light treatment drove cells to enter the growing/DNA synthesis stage (i.e., G1 to S to G2/M), accompanied by increasing motility and photosynthetic efficiency. Inhibition of photosynthesis by 3-(3, 4-dichlorophenyl)-1, 1-dimethyl-urea (DCMU) treatment blocked the cell proliferation process. Dark treatment was required for the mitotic division stage, where cells return from G2/M to G1. Two different pools of adenylyl cyclase (AC) activities were shown to be involved in the growing/DNA synthesis and mitotic division states, respectively. Communicated by Biology Editor Dr Michael Lesser  相似文献   

13.
14.
Cell cycle events in embryo axes of Norway maple (Acer platanoides L.) seeds were studied during dormancy breaking by flow cytometric analyses of the nuclear DNA content and by immunodetection of β-tubulin. Most embryonic nuclei of dry, fully matured seeds were arrested in the G2 phase of the cell cycle. In addition, the lowest content of β-tubulin was detected in dry, mature seeds. Imbibition in water and cold stratification resulted in a decrease in the number of nuclei in G2, and a simultaneous increase in β-tubulin content. In germinated seeds the content of β-tubulin was the highest and the number of cells in G2 was the lowest. Both cell cycle events preceded cell expansion and division and subsequent growth of the radicle through the seed coat. The anatomical investigation has proved that the main reason for decrease in the number of nuclei in G2 is mitosis, started with seeds germination (radicle protrusion). The activation of the cell cycle and the β-tubulin accumulation were associated with embryo dormancy breaking. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
SYNOPSIS. Using continuous flow cultures based on the chemostat principle, we varied the cell generation times of the ciliate Tetrahymena pyriformis strain GL, from 4.9 to 22.2 hr and studied various parameters of the cell cycle at 28 C. These included: the duration of the periods required for oral morphogenesis, macronuclear division, cell division, G1 S, and G2. The size of individual cells was also measured. Independent of the growth rate, the period of oral morphogenesis occurred during the last 90 min of the cell cycle. In all cases macronuclear and cell divisions took place during the last part of these 90 min, and the final macronuclear separation occurred just before final cell separation. The S-period increased slightly, while the G1 and G2 both increased in roughly the same relative proportion to the increasing generation times. Slowly growing cells (generation time 20.5 hr) were shorter but broader and somewhat larger in volume than quickly growing cells (generation time 4.9 hr).  相似文献   

16.
Michio Ito 《Planta》1969,90(1):22-31
Summary In protonemata of Pteris vittata grown for 6 days under red light, which brings about a marked depression of mitotic activity, the first division of the cells was synchronously induced by irradiation with blue light, and subsequent cell divisions were also promoted. The peak of the mitotic index reached a maximum of about 70% at 11.5 hrs, and 90% of all protonemata divided between the 11th and 13th hour after exposure to blue light. When the protonemata were continuously irradiated with blue light, synchronism of the next cell division in the apical cells decreased to a mitotic index of about 30%, and further divisions occurred randomly.The synchronization of cell division was found to be a combined effect of red and blue light. Red light maintained the cells in the early G1 phase of the cell cycle; blue light caused the cells to progress synchronously through the cell cycle, with an average duration of 12 hr. By using 3H-thymidine, the average duration of the G1, S, G2 and M phases was determined to be about 3.5, 5, 2.5 and 1 hr, respectively.Synchronous cell division could be induced in older protonemata grown for 6 to 12 days in red light and even in protonemata having two cells. It could be repeated in the same protonema by reexposure to red light for 24 hrs or more before another irradiation with blue light.  相似文献   

17.
The present study was undertaken to determine whether endometrial cancer cell line HEC-1-A differ from nontransformed cells, in that the cAMP and protein kinase C pathways may enhance IGF-I effects in mitogenesis by acting at the G1 phase of the cell cycle instead of G0. Immunofluorescence staining of HEC-1-A cells using the proliferating cell nuclear antigen (PCNA) monoclonal antibody and flow cytometric analysis determined that HEC-1-A cells do not enter the G0 phase of the cell cycle when incubated in a serum-free medium. Approximately 51% of the cells were in G1, 12% were in S and 37% in G2 phase of the cell cycle prior to treatment. Forskolin and phorbol-12-myristate 13-acetate (PMA) were used to stimulate cAMP production and protein kinase C activity, respectively. IGF-I, forskolin and PMA each increased (P <0.01) [3H]-thymidine incorporation in a dose and time dependent manner. The interaction of forskolin and PMA with IGF-I was then determined. Cells preincubated with forskolin or PMA followed by incubation with IFG-I incorporated significantly more (P <0.01) [3H]-thymidine into DNA than controls or any treatment alone. It is concluded that forskolin and, to a lesser extent, PMA exert their effect at the G1 phase of the cycle to enhance IGF-I effects in cell proliferation.  相似文献   

18.
Summary Analysis of the cell cycle by three methods has revealed unusual kinetics of proliferation in tumour derived suspensions ofCrepis capillaris. The different methods of analysis yield different estimates of cycle phase durations, and such discrepancies have been explained in terms of low growth fractions with rapid total cycle traverse. Specifically, confidence in the estimation of G2 duration by the fraction of labelled mitosis analysis, and comparison with shorter G2 estimates obtained by the two other methods, suggests that cells drop out in G1. However, cells which do not drop out of the proliferative compartment traverse G1 extremely rapidly. Extremely short cell cycle durations in which the G1 phase is virtually non-existent are uncharacteristic of plant cell suspension cultures, in which the G1 phase has previously been shown to be extended as compared with meristematic root tip cells. A model has been proposed in which a central core of rapidly dividing cells continuously loses cells into a subpopulation of resting or G0 cells with the G1 DNA content. Similarities between plant and animal tumours with respect to cell growth and division are discussed.  相似文献   

19.
Invasive cancer cells are a critical target in order to prevent metastasis. In the present report, we demonstrate real-time visualization of cell cycle kinetics of invading cancer cells in 3-dimensional (3D) Gelfoam® histoculture, which is in vivo-like. A fluorescence ubiquitination cell cycle indicator (FUCCI) whereby G0/G1 cells express a red fluorescent protein and S/G2/M cells express a green fluorescent protein was used to determine the cell cycle position of invading and non-invading cells. With FUCCI 3D confocal imaging, we observed that cancer cells in G0/G1 phase in Gelfoam® histoculture migrated more rapidly and further than cancer cells in S/G2/M phases. Cancer cells ceased migrating when they entered S/G2/M phases and restarted migrating after cell division when the cells re-entered G0/G1. Migrating cancer cells also were resistant to cytotoxic chemotherapy, since they were preponderantly in G0/G1, where cytotoxic chemotherapy is not effective. The results of the present report suggest that novel therapy targeting G0/G1 cancer cells should be developed to prevent metastasis.  相似文献   

20.
Upregulation of survivin by HIV-1 Vpr   总被引:5,自引:0,他引:5  
The human survivin gene belongs to the family of inhibitor of apoptosis proteins (IAP) and is involved in apoptosis inhibition and regulation of cell division. The survivin gene is the only member of the IAP family whose expression is known to be regulated through the cell cycle. Survivin expression reaches the highest levels during the G2/M transition and then is rapidly degraded during the G1 phase. Here we report that the human immunodeficiency virus type 1 (HIV-1) upregulates Survivin expression via survivin promoter transactivation. Vpr, an HIV-1 accessory protein that induces cell cycle arrest in G2/M, is necessary and sufficient for this effect. Blocking Vpr-induced G2/M arrest leads to elimination of the survivin promoter transactivation by Vpr. Our results suggest that Survivin may be actively involved in regulating cell viability during HIV-1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号