首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Accurate, reliable and reproducible measurement of intracellular metabolite levels has become important for metabolic studies of microbial cell factories. A first critical step for metabolomic studies is the establishment of an adequate quenching and washing protocol, which ensures effective arrest of all metabolic activity and removal of extracellular metabolites, without causing leakage of metabolites from the cells. Five different procedures based on cold methanol quenching and cell separation by filtration were tested for metabolomics of Pichia pastoris regarding methanol content and temperature of the quenching solution as key parameters. Quantitative evaluation of these protocols was carried out through mass balance analysis, based on metabolite measurements in all sample fractions, those are whole broth, quenched and washed cells, culture filtrate and quenching and washing solution. Finally, the optimal method was used to study the time profiles of free amino acid and central carbon metabolism intermediates in glucose-limited chemostat cultures. Acceptable recoveries (>90%) were obtained for all quenching procedures tested. However, quenching at −27°C in 60% v/v methanol performed slightly better in terms of leakage minimization. We could demonstrate that five residence times under glucose limitation are enough to reach stable intracellular metabolite pools. Moreover, when comparing P. pastoris and S. cerevisiae metabolomes, under the same cultivation conditions, similar metabolite fingerprints were found in both yeasts, except for the lower glycolysis, where the levels of these metabolites in P. pastoris suggested an enzymatic capacity limitation in that part of the metabolism.  相似文献   

3.
代谢组样品制备是代谢组学研究的基础。本文以维生素B12生产菌株苜蓿中华根瘤菌Sinorhizobium meliloti 320为研究对象,通过检测细胞损伤、ATP泄漏、代谢物回收效率以及细胞代谢淬灭效率综合评价细胞淬灭方法,同时对5种提取试剂的提取效率进行比较优化胞内代谢物的提取方法。最终获得苜蓿中华根瘤菌S.meliloti 320的胞内代谢组学样品制备较佳条件:即-20℃40%甲醇淬灭细胞,过滤收集淬灭细胞,甲醇/乙腈/水(体积比为2∶2∶2,外加0.1%的甲酸)与50%甲醇相结合提取胞内代谢物。实验结果显示-20℃的40%甲醇(通过过滤收集细胞)对细胞膜的损伤较小,且细胞代谢淬灭效率和回收效率较高;甲醇/乙腈/水(体积比为2∶2∶2,外加0.1%的甲酸)与50%的甲醇对胞内代谢物的提取效率较高且有互补作用。  相似文献   

4.
5.
6.
In biochemistry and cell biology, understanding the molecular mechanisms by which physiological processes are regulated is regarded as an ultimate goal. In higher plants, one of the most widely investigated regulatory processes occurs in the light harvesting complexes (LHCII) of the chloroplast thylakoid membranes. Under limiting photon flux densities, LHCII harvests sunlight with high efficiency. When the intensity of incident radiation reaches levels close to the saturation of the photosynthesis, the efficiency of light harvesting is decreased by a process referred to as nonphotochemical quenching (NPQ), which enhances the singlet-excited state deactivation via nonradiative dissipative processes. Conformational rearrangements in LHCII are known to be crucial in promoting and controlling NPQ in vitro and in vivo. In this article, we address the thermodynamic nature of the conformational rearrangements promoting and controlling NPQ in isolated LHCII. A combined, linear reaction scheme in which the folded, quenched state represents a stable intermediate on the unfolding pathway was employed to describe the temperature dependence of the spectroscopic signatures associated with the chlorophyll fluorescence quenching and the loss of secondary structure motifs in LHCII. The thermodynamic model requires considering the temperature dependence of Gibbs free energy difference between the quenched and the unquenched states, as well as the unfolded and quenched states, of LHCII. Even though the same reaction scheme is adequate to describe the quenching and the unfolding processes in LHCII monomers and trimers, their thermodynamic characteristics were found to be markedly different. The results of the thermodynamic analysis shed light on the physiological importance of the trimeric state of LHCII in stabilizing the efficient light harvesting mode as well as preventing the quenched conformation of the protein from unfolding. Moreover, the transition to the quenched conformation in trimers reveals a larger degree of cooperativity than in monomers, explained by a small characteristic entropy (ΔHq = 85 ± 3 kJ mol−1 compared to 125 ± 5 kJ mol−1 in monomers), which enables the fine-tuning of nonphotochemical quenching in vivo.  相似文献   

7.
Dissipation of absorbed excitation energy as heat, measured by its effect on the quenching of chlorophyll fluorescence, is induced under conditions of excess light in order to protect the photosynthetic apparatus of plants from light-dependent damage. The spectral characteristics of this quenching have been compared to that due to photochemistry in the Photosystem II reaction centre using leaves of Guzmania monostachia. This was achieved by making measurements at 77K when fluorescence emission bands from each type of chlorophyll protein complex can be distinguished. It was demonstrated that photochemistry and non-photochemical dissipation preferentially quench different emission bands and therefore occur by dissimilar mechanisms at separate sites. It was found that photochemistry was associated with a preferential quenching of emission at 688 nm whereas the spectrum for rapidly reversible non-photochemical quenching had maxima at 683 nm and 698 nm, suggesting selective quenching of the bands originating from the light harvesting complexes of Photosystem II. Further evidence that this was occurring in the light harvesting system was obtained from the fluorescence excitation spectra recorded in the quenched and relaxed states.Abbreviations pH transthylakoid pH gradient - Fo minimum level of chlorophyll fluorescence when Photosystem II reaction centres are open - Fm maximum level of fluorescence when Photosystem II reaction centres are closed - Fv variable fluorescence Fm minus Fo - F'o Fo in any quenched state - Fm Fm in any quenched state - LHCII light harvesting complexes of Photosystem II - PSI Photosystem I - PS II Photosystem II - qN non-photochemical quenching of chlorophyll fluorescence - qE non-photochemical quenching of chlorophyll fluorescence that occurs in the presence of a pH  相似文献   

8.
9.
Metabolomics is a rapidly emerging tool for studying and optimizing both media and bioprocess development for culturing recombinant mammalian cells that are used in protein production processes. Quenching of the cells is crucial to fix their metabolic status at the time of sampling. Three precooled quenching solutions were tested for their ability to fix the metabolic activity of CHO cells: phosphate-buffered saline (PBS) (pH 7.4; 0.5°C), 60% methanol with 70?mM HEPES (pH 7.4; -20°C), and 60% methanol with 0.85% (w/v) ammonium bicarbonate (AMBIC) (pH 7.4; -20°C). The metabolic activity of the sampled CHO cells was assessed by determining the intracellular levels of ATP using a bioluminescence assay and selected metabolites with LC-MS/MS. We found the precooled PBS (pH 7.4; 0.5°C) to be the optimal quenching reagent for fixing intracellular metabolism. Importantly, the structural integrity of the cell membrane was maintained and highest yields were obtained for intracellular levels of ATP as well as for 18 out of 28 intracellular metabolites. In contrast to the previously reported studies, buffered methanol quenching was not applicable for suspension cultured CHO cells as cellular membrane integrity was affected. We recommend that the cells are quenched and washed simultaneously to keep the sampling time to a minimum and to prevent any further metabolic activity in the cells. We observed that additional washing steps are not required. Our analyses suggest that methanol as quenching solution, even in combination with a buffer substance, appears not suitable for quenching sensitive mammalian cells. The protocol we report herein is a simple cell sampling method that enables high-throughput metabolomic analyses and is suitable for a large number of samples.  相似文献   

10.
Metabolite profiling of industrially important suspension-cultured mammalian cells is being increasingly used for rational improvement of bioprocesses. This requires the generation of global metabolite profiles that cover a broad range of metabolites and that are representative of the cells at the time of sampling. The protocol described here is a validated method for recovery of physiologically relevant amounts of key metabolites from suspension-cultured mammalian cells. The method is a two-step process consisting of initial quenching of the cells (to stop cellular metabolism and allow isolation of the cells) followed by extraction of the metabolites. The cells are quenched in 60% methanol supplemented with 0.85% (wt/vol) ammonium bicarbonate at -40 °C. Metabolites are then extracted from the quenched cells using two 100% methanol extractions followed by a single water extraction. Metabolite samples generated using this protocol are amenable to analysis by mass spectrometry-based techniques (e.g., gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry), NMR spectroscopy and enzymatic assays.  相似文献   

11.
The steady state absorption and fluorescence spectroscopic properties of the xanthophylls, violaxanthin, zeaxanthin, and lutein, and the efficiencies of singlet energy transfer from the individual xanthophylls to chlorophyll have been investigated in recombinant CP26 protein overexpressed in Escherichia coli and then refolded in vitro with purified pigments. Also, the effect of the different xanthophylls on the extents of static and dynamic quenching of chlorophyll fluorescence has been investigated. Absorption, fluorescence, and fluorescence excitation demonstrate that the efficiency of light harvesting from the xanthophylls to chlorophyll a is relatively high and insensitive to the particular xanthophyll that is present. A small effect of the different xanthophylls is observed on the extent of quenching of Chl fluorescence. The data provide the precise wavelengths of the absorption and fluorescence features of the bound pigments in the highly congested spectral profiles from these light-harvesting complexes. This information is important in assessing the mechanisms by which higher plants dissipate excess energy in light-harvesting proteins.  相似文献   

12.
13.
14.
15.
16.
G M Omann  M Glaser 《Biochemistry》1984,23(21):4962-4969
A fluorescence quenching method was developed for determining partition coefficients and diffusional rates of small molecules in cell membranes. This method involves quenching the fluorescence of carbazole-labeled membranes by hydrophobic molecules that partition into membranes. Cell membrane phospholipids of mouse LM cells in tissue culture were biosynthetically labeled with the carbazole moiety by supplementing the growth media with 11-(9-carbazolyl)undecanoic acid. Plasma membranes, microsomes, and mitochondria were isolated free of nonmembranous neutral lipids, and the incorporation of the fluorescent probe was characterized. Quenching studies of the carbazole moiety by a series of N-substituted picolinium perchlorate salts showed that the carbazole moiety was located in the hydrophobic interior of the membrane bilayer. The carbazole fluorescence also was quenched by the hydrophobic quenchers lindane, methoxychlor, and 1,1-dichloro-2,2-bis(rho-chlorophenyl)ethylene, indicating that these compounds partitioned into the membrane. Stern-Volmer quenching constants determined by fluorescence lifetime and intensity measurements were identical, as expected for dynamic quenching. The effects of different lipid compositions on quenching constants and partition coefficients were determined by comparing different membrane fractions. These parameters also were measured in membranes from cells in which the phospholipid composition was altered by substituting ethanolamine for choline in the growth medium. Changes in the lipid composition produced changes in the bimolecular quenching constants. For example, bimolecular quenching constants for 1,1-dichloro-2,2-bis(rho-chlorophenyl)ethylene were higher in mitochondrial membranes than in plasma membranes and microsomes. They were also higher in dispersions made from membrane phospholipids as compared with intact membranes or total lipid dispersion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Guava leaves were classified and the free radical scavenging activity (FRSA) evaluated according to different harvest times by using the (1)H-NMR-based metabolomic technique. A principal component analysis (PCA) of (1)H-NMR data from the guava leaves provided clear clusters according to the harvesting time. A partial least squares (PLS) analysis indicated a correlation between the metabolic profile and FRSA. FRSA levels of the guava leaves harvested during May and August were high, and those leaves contained higher amounts of 3-hydroxybutyric acid, acetic acid, glutamic acid, asparagine, citric acid, malonic acid, trans-aconitic acid, ascorbic acid, maleic acid, cis-aconitic acid, epicatechin, protocatechuic acid, and xanthine than the leaves harvested during October and December. Epicatechin and protocatechuic acid among those compounds seem to have enhanced FRSA of the guava leaf samples harvested in May and August. A PLS regression model was established to predict guava leaf FRSA at different harvesting times by using a (1)H-NMR data set. The predictability of the PLS model was then tested by internal and external validation. The results of this study indicate that (1)H-NMR-based metabolomic data could usefully characterize guava leaves according to their time of harvesting.  相似文献   

18.
A contained, crossflow filtration (CFF) membrane system is described for harvesting Saccharomyces cerevisiae and Escherichia coli cells. This system is portable and can be cleaned and sanitized in place. Low- and high-cell density (LCD, HCD) fermentations of recombinant cells in 10- to 200-l volumes were used as the starting material. LCD fermentations, up to 8.3 g l-1 dry weight (dcw) of S. cerevisiae, with volumes of 10 to 200 l were harvested and diafiltered in 0.5 and 1.5 h, respectively. HCD 200-l fermentations of S. cerevisiae (47-63 g l-1 dcw) were harvested and diafiltered in approximately 2 h. E. coli fermentations, LCD and HCD (up to 16.2 g l-1 dcw), of 200-l volumes were harvested and diafiltered in 2.3 h while employing 14 and 75 ft2 of membrane area, respectively. Using hollow fiber or flat sheet membranes from different sources, cell harvesting times were less than 2.5 h. These studies demonstrate that CFF is an efficient method for harvesting and diafiltering recombinant S. cerevisiae and E. coli cells from fermentation broth.  相似文献   

19.
Centrifugal elutriation was used to separate 9L rat brain tumour cells into fractions enriched in the G1, S, or G2/M phases of the cell cycle. Cells enriched in early G1, phase were recultured, grown in synchrony, and harvested periodically for analysis of their DNA distribution and polyamine content. Mathematical analysis of the DNA distributions indicated that excellent synchrony was obtained with low dissersion throughout the cell cycle. Polyamine accumulation began at the time of seeding, and intracellular levels of putrescine, spermidine, and spermine increased continuously during the cell cycle. In cells in the G2/M phase of the cell cycle, putrescine and spermidine levels were twice as high as in cells in the G1, phase. DNA distribution and polyamine levels were also analysed in cells taken directly from the various elutriation fractions enriched in G1, S, or G2/M. Because we did not obtain pure S or G2/M populations by elutriation or by harvesting synchronized cells, a mathematical procedure—which assumed that the measured polyamine levels for any population were linearly related to the fraction of cells in the G1, S, and G2/M phases times the polyamine levels in these phases and that polyamine levels did not vary within these phases—was used to estimate ‘true’ phase-specific polyamine levels (levels to be expected if perfect synchrony were achieved). Estimated ‘true’ phase-specific polyamine levels calculated from the data obtained from cells either sorted by elutriation or obtained from synchronously growing cultures were very similar.  相似文献   

20.
Enhanced resolution of rapid and complex anisotropy decays was obtained by measurement and analysis of data from progressively quenched samples. Collisional quenching by acrylamide was used to vary the mean decay time of indole or of the tryptophan fluorescence from melittin. Anisotropy decays were obtained from the frequency-response of the polarized emission at frequencies from 4 to 2,000 MHz. Quenching increases the fraction of the total emission, which occurs on the subnanosecond timescale, and thereby provides increased information on picosecond rotational motions or local motions in proteins. For monoexponential subnanosecond anisotropy decays, enhanced resolution is obtained by measurement of the most highly quenched samples. For complex anisotropy decays, such as those due to both local motions and overall protein rotational diffusion, superior resolution is obtained by simultaneous analysis of data from quenched and unquenched samples. We demonstrate that measurement of quenched samples greatly reduces the uncertainty of the 50-ps correlation time of indole in water at 20 degrees C, and allows resolution of the anisotropic rotation of indole with correlation times of 140 and 720 ps. The method was applied to melittin in the monomeric and tetrameric forms. With increased quenching, the anisotropy data showed decreasing contributions from overall protein rotation and increased contribution from picosecond tryptophan motions. The tryptophan residues in both the monomeric and the tetrameric forms of melittin displayed substantial local motions with correlation times near 0.16 and 0.06 ns, respectively. The amplitude of the local motion is twofold less in the tetramer. These highly resolved anisotropy decays should be valuable for comparison with molecular dynamics simulations of melittin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号