首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In higher plants the essential amino acids lysine, threonine, methionine and isoleucine are synthesised through a branched pathway starting from aspartate. The key enzyme of lysine biosynthesis in this pathway—dihydrodipicolinate synthase (DHDPS)—is feedback-inhibited by lysine. The dhdps-r1 gene from a mutant Nicotiana sylvestris, which encodes a DHDPS enzyme insensitive to feedback inhibition, was used to improve the lysine content in pigeonpea seeds. The dhdps-r1 coding region driven by a phaseolin or an Arabidopsis 2S2 promoter was successfully overexpressed in the seeds of pigeonpea by using Agrobacterium transformation and particle bombardment. In 11 lines analysed, a 2- to 6-fold enhanced DHDPS activity in immature seeds at a late stage of maturation was found in comparison to wild type. The overexpression of dhdps-r1 led to an enhanced content of free lysine in the seeds of pigeonpea from 1.6 to 8.5 times compared with wild type. However, this was not reflected in an increase in total seed lysine content. This might be explained by a temporal discrepancy between maximal expression of dhdps-r1 and the rate of amino acid incorporation into storage proteins. Assays of the lysine degradative enzyme lysine-ketoglutarate reductase in these seeds showed no co-ordinated regulation of lysine biosynthesis and catabolism during seed maturation. All transgenic plants were fertile and produced morphologically normal seeds.  相似文献   

2.
Protein lysine methylation is a prevalent post-translational modification (PTM) and plays critical roles in all domains of life. However, its extent and function in photosynthetic organisms are still largely unknown. Cyanobacteria are a large group of prokaryotes that carry out oxygenic photosynthesis and are applied extensively in studies of photosynthetic mechanisms and environmental adaptation. Here we integrated propionylation of monomethylated proteins, enrichment of the modified peptides, and mass spectrometry (MS) analysis to identify monomethylated proteins in Synechocystis sp. PCC 6803 (Synechocystis). Overall, we identified 376 monomethylation sites in 270 proteins, with numerous monomethylated proteins participating in photosynthesis and carbon metabolism. We subsequently demonstrated that CpcM, a previously identified asparagine methyltransferase in Synechocystis, could catalyze lysine monomethylation of the potential aspartate aminotransferase Sll0480 both in vivo and in vitro and regulate the enzyme activity of Sll0480. The loss of CpcM led to decreases in the maximum quantum yield in primary photosystem II (PSII) and the efficiency of energy transfer during the photosynthetic reaction in Synechocystis. We report the first lysine monomethylome in a photosynthetic organism and present a critical database for functional analyses of monomethylation in cyanobacteria. The large number of monomethylated proteins and the identification of CpcM as the lysine methyltransferase in cyanobacteria suggest that reversible methylation may influence the metabolic process and photosynthesis in both cyanobacteria and plants.  相似文献   

3.
The aspartate-derived amino-acid pathway leads to the production of the essential amino-acids lysine, methionine, threonine and isoleucine. Aspartate kinase (AK) is the first enzyme in this pathway and exists in isoforms that are feedback inhibited by lysine and threonine. Two maize (Zea mays L.) threonine-overproducing, lysine-insensitive AK mutants (Ask1-LT19 and Ask2-LT20) were previously isolated. The present study was conducted to determine the map location of Ask2 and to examine the amino-acid profiles of the Ask mutants. The threonine-overproducing trait conferred by Ask2-LT20 was mapped to the long arm of chromosome 2. Both mutants exhibited increased free threonine concentrations (nmol/mg dry weight) over wild-type. The percent free threonine increased from approximately 2% in wild-type kernels to 37–54% of the total free amino-acid pool in homozygous mutant kernels. Free methionine concentrations also increased significantly in homozygous mutants. Free lysine concentrations were increased but to a much lesser extent than threonine or methionine. In contrast to previous studies, free aspartate concentrations were observed to decrease, indicating a possible limiting factor in threonine synthesis. Total (free plus protein-bound) amino-acid analyses demonstrated a consistent, significant increase in threonine, methionine and lysine concentrations in the homozygous mutants. Significant increases in protein-bound (total minus free) threonine, methionine and lysine were observed in the Ask mutants, indicating adequate protein sinks to incorporate the increased free amino-acid concentrations. Total amino-acid contents (nmol/kernel) were approximately the same for mutant and wild-type kernels. In five inbred lines both Ask mutations conferred the threonine-overproducing phenotype, indicating high expressivity in different genetic backgrounds. These analyses are discussed in the context of the regulation of the aspartate-derived amino-acid pathway.  相似文献   

4.
Lysine is one of the nutritionally limiting amino acids in food and feed products made from maize (Zea mays L.). Two enzymes in the lysine biosynthesis pathway, aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS), have primary roles in regulating the level of lysine accumulation in plant cells because both enzymes are feedback-inhibited by lysine. An isolated cDNA clone for maize DHPS was modified to encode a DHPS much less sensitive to lysine inhibition. The altered DHPS cDNA was transformed into maize cell suspension cultures to determine the effect on DHPS activity and lysine accumulation. Partially purified DHPS (wildtype plus mutant) from transformed cultures was less sensitive to lysine inhibition than wild-type DHPS from nontransformed cultures. Transformed cultures had cellular free lysine levels as much as four times higher than those of nontransformed controls. Thus, we have shown that reducing the feedback inhibition of DHPS by lysine can lead to increased lysine accumulation in maize cells. Increasing the capacity for lysine synthesis may be an important step in improving the nutritional quality of food and feed products made from maize.  相似文献   

5.
6.
Summary Two S-(2-aminoethyl)L-cysteine (AEC) resistant lines were isolated by screening mutagenized protoplasts from diploid N. sylvestris plants. Both lines accumulated free lysine at levels 10 to 20-fold higher than in controls. Lysine overproduction and AEC-resistance were also expressed in plants regenerated from the variant cultures. A feedback insensitive form of dihydrodipicolinate synthase (DHPS), the pathway specific control enzyme for lysine synthesis, was detected in callus cultures and leaf extracts from the resistant lines. Aspartate kinase (AK), the other key enzyme in the regulation of lysine biosynthesis, was unaltered in the mutants. Crosses with wild type plants indicated that the mutation conferring insensitivity to feedback in DHPS, with as result overproduction of lysine and resistance to AEC, was inherited as a single dominant nuclear gene.Abbreviations AK aspartate kinase (EC 2.7.2.4) - DHPS dihydrodipicolinate synthase (EC 4.2.1.52) - AEC S-(2-aminoethyl)L-cysteine  相似文献   

7.
Aspartate kinase (AK; EC 2.7.2.A) catalyzes the first reaction in the biosynthesis pathway for aspartate-derived amino acids in plants. Aspartate kinase was purified from wildtype and two maize (Zea mays L.) genotypes carrying unlinked dominant mutations,Ask LT19 andAsk2 -LT20, that conferred overproduction of threonine, lysine, methionine and isoleucine. The objective of this investigation was to characterize the AKs from mutant and wildtype plants to determine their role in regulating the synthesis of aspartate-derived amino acids in maize. Kernels of the homozygousAsk2 mutant exhibited 174-, 10-, 13- and 2-fold increases in, in this sequence, free threonine, lysine, methionine and isoleucine, compared to wildtype. In wildtype maize, AK was allosterically feedback-inhibited by lysine with 10 μMl-lysine required for 50% inhibition. In contrast, AK purified from the isogenic heterozygousAsk and homozygousAsk2 mutants required 25 and 760 μM lysine for 50% inhibition, respectively, indicating thatAsk andAsk2 were separate structural loci for lysine-regulated AK subunits in maize. Further characterization of purified AK from the homozygous mutantAsk2 line indicated altered substrate and lysine inhibition kinetics. The apparent Hill coefficient was 0.7 for the mutantAsk2 AK compared with 1.6 for the wildtype enzyme, indicating that the mutant allele conferred the loss of a lysinebinding site to the mutant AK. Lysine appeared to be a linear noncompetitive inhibitor ofAsk2 AK with respect to MgATP and an uncompetitive inhibitor with respect to aspartate compared to S-parabolic, I parabolic noncompetitive inhibition of wildtype AK. Reduced lysine sensitivity of theAsk2 gene product appeared to reduce the lysine inhibition of all of the AK activity detected in homozygousAsk2 plants, indicating that maize AK is a heteromeric enzyme consisting of the two lysine-sensitive polypeptides derived from theAsk andAsk2 structural genes. Scientific paper No. 17419, Minnesota Agricultural Experiment Station projects No. 0302-4813-56 and No. 0302-4818-32 This research was supported in part by the U.S. Depatment of Agriculture Competitive Research Grants Office grant 86-CRCR-1-2019. The authors are grateful to Charles Grissom for providing the computer programs in an IBM-PC format.  相似文献   

8.
Analysis of the aspartic acid metabolic pathway using mutant genes   总被引:3,自引:0,他引:3  
Azevedo RA 《Amino acids》2002,22(3):217-230
Summary. Amino acid metabolism is a fundamental process for plant growth and development. Although a considerable amount of information is available, little is known about the genetic control of enzymatic steps or regulation of several pathways. Much of the information about biochemical pathways has arisen from the use of mutants lacking key enzymes. Although mutants were largely used already in the 60's, by bacterial and fungal geneticists, it took plant research a long time to catch up. The advance in this area was rapid in the 80's, which was followed in the 90's by the development of techniques of plant transformation. In this review we present an overview of the aspartic acid metabolic pathway, the key regulatory enzymes and the mutants and transgenic plants produced for lysine and threonine metabolism. We also discuss and propose a new study of high-lysine mutants. Received October 26, 2001 Accepted November 15, 2001  相似文献   

9.
Aspartate kinase (EC 2.7.2.4.) has been purified from 7 day etiolated wheat (Triticum aestivum L. var. Maris Freeman) seedlings and from embryos imbibed for 8 h. The enzyme was 50% inhibited by 0.25 mM lysine. In this study wheat aspartate kinase was not inhibited by threonine alone or cooperatively with lysine; these results contrast with those published previously. In vivo regulation of the synthesis of aspartate-derived amino acids was examined by feeding [14C]acetate and [35S]sulphate to 2–3 day germinating wheat embryos in culture in the presence of exogenous amino acids. Lysine (1 mM) inhibited lysine synthesis by 86%. Threonine (1 mM) inhibited threonine synthesis by 79%. Lysine (1 mM) plus threonine (1 mM) inhibited threonine synthesis by 97%. Methionine synthesis was relatively unaffected by these amino acids, suggesting that there are important regulatory sites other than aspartate kinase and homoserine dehydrogenase. [35S]sulphate incorporation into methionine was inhibited 50% by lysine (2 mM) plus threonine (2 mM) correlating with the reported 50% inhibition of growth by these amino acids in this system. The synergistic inhibition of growth, methionine synthesis and threonine synthesis by lysine plus threonine is discussed in terms of lysine inhibition of aspartate kinase and threonine inhibition of homoserine dehydrogenase.Abbreviations AEC S-(2-aminoethyl) cysteine  相似文献   

10.
Lysine metabolism in a barley mutant resistant to S(2-aminoethyl)cysteine   总被引:1,自引:0,他引:1  
Lysine and S(2-aminoethyl)cysteine (AEC) metabolism were investigated in normal barley (Hordeum vulgare L. cv. Bomi) and a hemozygous recessive AEC-resistant mutant (R906). Feedback regulation of lysine and threonine synthesis from [14C] acetate was unimpaired in plants of the mutant 3 d after germination. Seeds of Bomi and R906 contained similar total amounts of lysine, threonine, methionine and isoleucine. Concentrations of these amino acids in the soluble fraction of plants grown 6 d without AEC were also similar. The concentration of AEC in R906 plants was less than in the parent variety when both were grown in the presence of 0.25 mM AEC for 6 d. The uptake of [3H]AEC and [3H]lysine by roots of R906 was, respectively, 33% and 32% of that by Bomi roots whereas the uptake of these compounds into the scutellum was the same in both the mutant and its parent. The uptake of [3H]leucine and its incorporation into proteins was also the same in Bomi and R906 plants. These results suggest that a transport system specific for lysine and AEC but not leucine is altered or lost in roots of the mutant R906. AEC is incorporated into protein and this could be the reason for inhibition of growth rather than action as a false-feedback inhibitor of lysine biosynthesis.Abbreviations AEC S(2-aminoethyl)cysteine - LYS lysine - THR threonine  相似文献   

11.
To study the regulation of lysine and threonine metabolism in plants, we have transformed Arabidopsis thaliana with chimeric genes encoding the two bacterial enzymes dihydrodipicolinate synthase (DHPS) and aspartate kinase (AK). These bacterial enzymes are much less sensitive to feedback inhibition by lysine and threonine than their plant counterparts. Transgenic plants expressing the bacterial DHPS overproduced lysine, but lysine levels were quite variable within and between transgenic genotypes and there was no direct correlation between the levels of free lysine and the activity of DHPS. The most lysine-overproducing plants also exhibited abnormal phenotypes. However, these phenotypes were detected only at early stages of plant growth, while at later stages, new buds emerged that looked completely normal and set seeds. Wild-type plants exhibited relatively high levels of free threonine, suggesting that in Arabidopsis AK regulation may be more relaxed than in other plants. This was also supported by the fact that expression of the bacterial AK did not cause any dramatic elevation in this amino acid. Yet, the relaxed regulation of threonine synthesis in Arabidopsis was not simply due to a reduced sensitivity of the endogenous AK to feedback inhibition by lysine and threonine because growth of wild-type plants, but not of transgenic plants expressing the bacterial AK, was arrested in media containing these two amino acids. The present results, combined with previous studies from our laboratory, suggest that the regulation of lysine and threonine metabolism is highly variable among plant species and is subject to complex biochemical, physiological and environmental controls. The suitability of these transgenic Arabidopsis plants for molecular and genetic dissection of lysine and threonine metabolism is also discussed.  相似文献   

12.
Lysine is a nutritionally important essential amino acid, whose synthesis in plants is strongly regulated by the rate of its synthesis. Yet, lysine level in plants is also finely controlled by a super-regulated catabolic pathway that catabolizes lysine into glutamate and acetyl Co-A. The first two enzymes of lysine catabolism are synthesized from a single LKR/SDH gene. Expression of this gene is subject to compound developmental, hormonal and stress-associated regulation. Moreover, the LKR/SDH gene of different plant species encodes up to three distinct polypeptides: (i) a bifunctional enzyme containing the linked lysine-ketoglutarate (LKR) and saccharopine dehydrogenase (SDH) whose LKR activity is regulated by its linked SDH enzyme; (ii) a monofunctional SDH encoded by an internal promoter, which is a part of the coding DNA region of the LKR/SDH gene; and (iii) a monofunctional, highly potent LKR that is formed by polyadenylation within an intron. LKR activity in the bifunctional LKR/SDH polypeptide is also post-translationally regulated by phosphorylation by casein kinase-2 (CK2), but the consequence of this regulation is still unknown. Why is lysine metabolism super-regulated by synthesis and catabolism? A hypothesis addressing this important question is presented, suggesting that lysine may serve as a regulator of plant growth and interaction with the environment.  相似文献   

13.
Summary Regenerable maize (Zea mays L.) tissue cultures were selected for ability to grow in the presence of inhibitory (1.0–1.5 mM) concentrations of L-lysine plus L-threonine. Testcross kernels from one regenerated plant (LT20) segregated for wild-type and high free threonine concentration in a 11 ratio consistent with a single dominant gene for high free threonine. Free threonine concentrations (nmol/mg dry weight) increased an average of 29-fold in bulked F2 kernel samples from heterozygous mutant plants, and the total (free plus protein-bound) threonine concentration increased 68%. Increases in protein-bound methionine, lysine and glycine concentrations were also noted, suggesting a possible effect of the mutation on protein concentration and composition. Allelism tests with a previously selected mutant line, Ltr *19, showed that two unlinked, codominant genes conditioned the high free threonine phenotype. Based on a separate study of aspartate kinase feedback inhibition characteristics in the two mutant lines, we propose that the mutant alleles [gene and allele designations are according to guidelines for maize genetic nomenclature (Burnham et al. 1975)] be designated Ask-LT19 and Ask2-LT20 for the Ltr *19 and LT20 mutants, respectively.  相似文献   

14.
15.
Protein lysine acetylation is a reversible and highly regulated post‐translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology.  相似文献   

16.
A desensitized aspartate kinase (AK) gene has been developed as a non-antibiotic selection marker for use in the production of transgenic chickpea (Cicer arietinum L.). Transgenic shoots regenerated from embryo explants bombarded with the desensitized AK gene were selected on media containing two amino acids, lysine and threonine (LT). Approximately 15% of the putative transgenic shoots of vars. P-362 and P-1042 survived after 4 weeks of growth on MSB5 medium (MS mineral salts and B5 vitamins) containing 2 µM thidiazuron (TDZ) and 2 mM lysine and 2 mM threonine. These shoots were subsequently grown on MSB5 medium supplemented with 2 µM TDZ and 5 mM lysine and 5 mM threonine, and nearly 1% continued to grow after 16 weeks of selection. A phosphinothricin (PPT) selection system for Agrobacterium-mediated chickpea transformation was also developed. Three varieties of chickpea, P-362, P-1042 and P-1043, were successfully used for Agrobacterium transformation. Following Agrobacterium infection, 3-8% of the regenerated shoots remained green and continued to grow on MSB5 medium supplemented with 2.5 mg l-1 PPT. Increasing the concentrations of PPT to 15 mg l-1 reduced transgenic shoot production in P-362, P-1042 and P-1043 to 0.7%, 1.2% and 1.1%, respectively. Selected putatively transformed shoots of all three varieties were rooted and grown to maturity. Southern hybridization analysis revealed single as well as multiple integration of genes in selected transgenic lines. The level of AK activity detected in LT-selected plants was higher than that detected in the non-transformed control.Abbreviations AK: Aspartate kinase - CP: Chlorophenol red - GUS: -Glucuronidase - IBA: Indole-3-butyric acid - Kn: Kinetin (6-furfuryl aminopurine) - LT: Lysine plus threonine - MSB5: Murashige and Skoog salts with B5 vitamins - nptII: Neomycin phosphotransferase II - pat: Phosphinothricin-acetyltransferase - PPT: Phosphinothricin - TDZ: Thidiazuron [1-phenyl-3-(1,2,3-thiadiazol-5-YL) urea]Communicated by P. LakshmananJ. Sen and N. Tewari-Singh have contributed equally to this article.  相似文献   

17.
A major nutritional drawback of many crop plants is their low content of several essential amino acids, particularly lysine. The biosynthesis of lysine in plants is regulated by several feedback loops. Dihydrodipicolinate synthase (DHPS) from Escherichia coli, a key enzyme in lysine biosynthesis, which is considerably less sensitive to lysine accumulation than the endogenous plant enzyme has been expressed in chloroplasts of tobacco leaves. Expression of the bacterial enzyme was accompanied by a significant increase in the level of free lysine. No increase in protein-bound lysine was evident. Free lysine accumulation was positively correlated with the level of DHPS activity in various transgenic plants. Compartmentalization of DHPS in the chloroplast was essential for its participation in lysine biosynthesis as no lysine overproduction was obtained in transgenic plants that expressed the bacterial enzyme in the cytoplasm. The elevated level of free lysine in the transgenic plants was sufficient to inhibit, in vivo, a second key enzyme in lysine biosynthesis, namely, aspartate kinase, with no apparent influence on lysine accumulation. The present report not only provides a better understanding of the regulation of lysine biosynthesis in higher plants but also offers a new strategy to improve the production of this essential amino acid.  相似文献   

18.
The essential amino acid lysine is synthesized in higher plants by a complex pathway that is predominantly regulated by feedback inhibition of two enzymes, namely aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). Although DHPS is thought to play a major role in this regulation, the relative importance of AK is not known. In order to study this regulation, we have expressed in the chloroplasts of transgenic potato plants a DHPS derived from Escherichia coli at a level 50-fold above the endogenous DHPS. The bacterial enzyme is much less sensitive to lysine inhibition than its potato counterpart. DHPS activity in leaves, roots and tubers of the transgenic plants was considerably higher and more resistant to lysine inhibition than in control untransformed plants. Furthermore, this activity was accompanied by a significant increase in level of free lysine in all three tissues. Yet, the extent of lysine overproduction in potato leaves was significantly lower than that previously reported in leaves of transgenic plants expressing the same bacterial enzyme, suggesting that in potato, AK may also play a major regulatory role in lysine biosynthesis. Indeed, the elevated level of free lysine in the transgenic potato plants was shown to inhibit the lysine-sensitive AK activity in vivo. Our results support previous reports showing that DHPS is the major rate-limiting enzyme for lysine synthesis in higher plants, but they suggest that additional plant-specific regulatory factors are also involved.  相似文献   

19.
A partially purified preparation of alpha-aminoadipate reductase (EC 1.2.1.31) from Penicillium chrysogenum is competitively inhibited by lysine (Ki of 0.26 mM). Exogenous addition of 10 mM L-lysine to resting mycelia of P. chrysogenum increased the intracellular lysine pool concentration 2-fold, but decreased the incorporation of (6-14C)-alpha-aminoadipate into protein-bound lysine to a fifth. The distribution of radioactivity in the pathway metabolites alpha-aminoadipate, saccharopine and lysine was consistent with the assumption of a lysine sensitive enzyme step in vivo between alpha-aminoadipate and saccharopine. Hence lysine inhibition of alpha-aminoadipate reductase may be of physiologic importance.  相似文献   

20.
Summary The allelic state of relA influences the phenotype of Escherichia coli strains carrying the lysA22 mutation: lysA22 relA strains are Lys where lysA22 relA + strains grow (slowly) in the absence of lysine. This physiological effect has been related to an effect of the expression of the relA locus on the regulation of lysine biosynthesis. The fully derepressed levels of some lysine enzymes (aspartokinase III, aspartic semialdehyde dehydrogenase, dihydrodipicolinate reductase) are observed under lysine limitation only in rel + strains. And the induction of DAP-decarboxylase by DAP is much higher in rel + than in rel strains when an amino acid limitation of growth is also realised. These results are in agreement with the hypothesis of Stephens et al. (1975) on a possible role of the stringent regulation as a general signal for amino acid deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号